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ABSTRACT

A total of 44 usable observations were made of three of the brightest Classical Cepheids in the sky, δ Cephei,
η Aquilae and ζ Geminorum. In each exposure, four Fe I spectral lines in the 6250 Å region were normalized,
converted to a velocity span, averaged, then fitted by a model. The resulting model parameters from each
exposure were then used to create a pulsation velocity curve as a function of phase and without the use of a
projection factor typically used in other techniques. Acceptable agreement is found in comparing the radial
velocity curves with Barnes, Bersier and Nardetto. The amplitudes of radius variation, used in the Baade-
Wesselink method, were determined to be 3.54 × 106, 4.59 × 106 and 4.75 × 106 km for δ Cephei, η Aquilae and
ζ Geminorum, respectively.
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1. INTRODUCTION

A Cepheid variable is a particular type of variable star, an intrinsic pulsating variable. The variability is caused
by physical changes within the star itself which causes its radius to expand and contract periodically. This
process is part of its natural evolution as it ages and occurs in the instability strip of the Hertzsprung-Russell
(HR) Diagram. A Cepheid varies in luminosity and spectral type with a generally stable, well determined
period. Once its period is known, the star’s absolute magnitude can be precisely determined using the following
empirically derived relation:

Mν = −2.76 log(Π) − 1.4, (1)

where Mν is the absolute magnitude and Π is the period in days. This implies that a longer period of pulsation
results from a more luminous star. This relation allows a Cepheid variable to act as standard candle when trying
to determine the distance to its host cluster or galaxy. Note that there is also a minor dependence on metallicity
that is not used in the equation above.

The Baade-Wesselink method is used to calculate the stellar radii of certain pulsating stars, including Cepheid
variables. To accomplish this, two different types of measurements must be made. First, the star’s flux (F ) and
surface brightness (σ) must be determined at two different points in its period, say at maximum and minimum
radius. The ratio of these radii can then be determined by the following relation:

Rmax

Rmin

=

√

F (Rmax)/σ(Rmax)

F (Rmin)/σ(Rmin)
. (2)

Second, the spectra of a variable star must be observed, with good phase coverage over its pulsation period, in
order to produce a pulsation velocity curve. This curve indicates the velocity at which the star is expanding
or contracting at any point in its phase. Knowing this, the difference between the two radii chosen above
(Rmax − Rmin in our case) can be calculated by summing up the products of velocity and time between two
consecutive time intervals. The result is two equations with two unknowns thus making it easy to solve for the
two radii. One can also device a distance, d, in parsecs (pc) to the pulsating variable by substituting the above
results into this equation:

d = 9.305
R

θ
= 9.305

Rmax − Rmin

∆θ
(3)

where θ =
√

F
πσ

is the mean angular diameter in miliarcseconds (mas) and R is in units of solar radii. The

mean angular diameter, and sometimes the angular diameters variations, ∆θ, can be accurately measured using
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long-baseline interferometry.1 Keep in mind, however, that all of these variables are wavelength dependent and
for consistency, both sets of measurements should be accomplished at similar wavelengths.

In order for a star to be pulsationally unstable, the driving regions within the star must overpower the effects
of the damping regions. This assertion is based on linear theory but so far also applies to nonlinear pulsations and
hence can be applied presumably to real stars as well. There are two main types of destabilization mechanisms:
nuclear driving and envelope ionization mechanisms. The former results from thermodynamic nuclear reactions
near the stellar center and is considered to be a negligible source for pulsations in a classical Cepheid. The latter
involves the modulation of the flux through the stellar envelope and is heavily favored as being the principle
source of pulsation. Cox2 has shown that flux modulations have the proper phasing to drive the pulsations
and under the right circumstances can even induce pulsational instability in a star. By his calculations, the
source of 80 − 90% of the driving is the once ionized helium ionization zone, where it is in the midstages of
ionizing to second helium ionization (He+ ⇀↽ He2+), while the remainder occurs in the hydrogen ionization zone
(H ⇀↽ H+). These zones exist in the envelope of the pulsating star and at certain phases the hydrogen ionization
front (HIF) may even interact with the photosphere itself.

Variation in the brightness of a Cepheid is mostly due to temperature variations, while changes in radius
have only a minor effect (≤ 10%). The maximum brightness occurs when the Cepheid is at its earliest spectra
(usually F type) while the minimum brightness occurs at the latest spectra (G type). This, however, does not
coincide with its minimum and maximum radius. There is a phase lag discrepancy that causes a retardation of
maximum brightness behind minimum radius on the order of 0.1−0.2 periods. The maximum brightness usually
occurs close to when the star is expanding through its equilibrium radius, which corresponds to a minimum
(most negative) radial velocity. This is based on the convention that the radial velocity is negative when the
star is expanding towards the observer and positive when it is contracting away from the observer.

The radial velocity is the velocity of an object along the observer’s line of sight. Emitted light from a
receding star experiences a Doppler shift that increases it’s wavelength thus making it appear redder (redshifted).
Similarly, the wavelength of the light from a rapidly approaching star will decrease thus causing the object to
appear more blue (blueshifted). The average Cepheid is moving at about 25 km/s relative to our solar system
therefore tends to have a substantial systemic radial velocity (vγ). The radial velocity of a star can be determined
by looking at its spectrum and comparing the star’s measured wavelength of a narrow spectral line with the
true wavelength as measured in a laboratory. This change in wavelength can be converted into a corresponding
velocity shift using the following relation:

∆λ

λ
=

∆v

c
, (4)

where λ is the wavelength, v is the velocity, and c is the speed of light in a vacuum. The radial velocity of
most stars is considered to be constant, once the barycenter corrections have been made, however the pulsations
of a Cepheid variable are large enough to cause a significant oscillation in its overall radial velocity. Thus a
barycenter corrected Cepheid variable has two radial velocity components: the systemic component (vγ) due to
its heliocentric motion and the pulsation component (Vpuls) due to its instability.

The weak spectral lines of a Cepheid variable are quite broad and tend to be asymmetric, thus making it
difficult to assign a specific wavelength to a spectral line. As a result, several methods have been developed to
measure radial velocities. These include the line minimum method, generally determined by fitting a parabola
to several pixels about the local minima, the Gaussian fit method, which uses a symmetric Gaussian profile, the
line bisector method, where the width of the line is measured at various depths, and the line centroid method,
determined by integrating the line profile.3 As a result of foreshortening and limb darkening, all of these methods
require a projection factor, p ≈ 1.40, which is multiplied with the systemically corrected observed radial velocity
(Vrad − vγ) to determine the actual radial velocity, hereafter referred to as the pulsation velocity, Vpuls.

Vpuls = p (Vrad − vγ) (5)

Nardetto at al.3 suggest using line centroid based methods for radial velocities of Cepheid variables because
the centroid projection factor is independent of the width of the spectral line and the rotation velocity. The
projection factors of the other methods are not independent of these variables and as such may vary significantly
throughout a Cepheid’s pulsation period.
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Star δ Cep η Aql ζ Gem
RA5 (J2006.5) 22h 29m 24.8s 19h 52m 48.2s 7h 4m 29.6s
Dec5 (J2006.5) +58◦ 26’ 55” +1◦ 1’ 22’ +20◦ 33’ 37”

Period4, 6 (Days) 5.366341 7.176775 10.14901
Spectral Range6 F5Ib - G1Ib F6Ib - G4Ib F7Ib - G3Ib

Apparent Magnitude6 3.48 - 4.37 3.48 - 4.39 3.62 - 4.18
Ephemeris6 (+2450000) 1809.556812 1808.676431 1814.85297

Table 1. Parameters for the observed Cepheid variables

This paper will investigate pulsation velocity curves for classical Cepheids by combining observations and
models to reproduce the curves without the use of a projection factor. The goal is to produce reliable amplitudes
of radius variation to be used in the Baade-Wesselink method. Three classical Cepheids have been chosen for
observation: δ Cephei, η Aquilae and ζ Geminorum. These stars were chosen specifically because they are visible
from our location in the northern hemisphere and they are adequately bright for our telescope and exposure
limits. Their parameters are given in Table 1. The ephemeris specifies the Julian Date of maximum intensity
for each star and is used as the period’s zero point, as is convention. The period for δ Cephei was taken from
the Combined General Catalogue of Variable Stars (Vol. I-III) while η Aquilae and ζ Geminorum’s periods were
calculated using the following formulae provided by Szabados.4

η Aquilae:
C = 2442794.726 + 7.176726 E (6)

Π = 7.176726 + 3.16 × 10−8 E (7)

ζ Geminorum:
C = 2443785.438 + 10.150074 E (8)

Π = 10.150074 − 10.76 × 10−7 E (9)

The chosen date, C, is used to solve for E, the number of periods between the two Julian Dates, which
then can be used to determine the period, Π. The mean Julian Date for each star’s set of exposures was used
for C, namely 2453871.357 for η Aquilae and 2453801.959 for ζ Geminorum. Though ζ Geminorum’s period is
decreasing quite rapidly, it can be considered to be constant over its six month observing season, with a change
of less than 0.0002% or 0.00002 days.

The remainder of this paper is organized as follows: Section 2 describes the observatory, how the spectral
observations were made and the software used to reduce and model the data, Section 3 covers the analysis of
the data and delivers the corresponding results, and Section 4 makes some important conclusions based on these
results. After the list of references is an appendix of model and observational data for the three Cepheids.

2. OBSERVATIONS AND REDUCTIONS

Spectroscopic observations are made at the Elginfield Observatory, near the University of Western Ontario, using
a 1.2 m telescope, a 4096x200 pixel CCD detector and a spectrograph at the coudé focus. Measurements are
centered on λ = 6250 Ångströms with a field of ≈ 65 Å. The resolving power is approximately 105 with signal-
to-noise ratios of approximately 250 for this project.7, 8 Observations were made by Kevin B. Stevenson (KBS),
Dr. David F. Gray (DFG) and Kevin Brown (KB) between October of 2005 and August of 2006 as part of a
Masters project under the supervision and helpful guidance of Dr. Gray.

A diagram of the coudé room, which houses the spectrograph, can be seen in Figure 1. The operation of this
spectrograph is as follows. Light from the telescope passes through a 6250 Å filter located on the filter wheel
and is focused onto the entrance slit, which uses a Richardson image slicer to recycle any lost light not falling
directly on the slit back onto the slit. Next, a collimator mirror is placed at its focal length from the entrance
slit to produce parallel light rays onto the diffraction grating. The light is then dispersed using a blazed grating
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Figure 1. A schematic of the Elginfield Observatory coudé spectrograph9

that can be rotated to select the desired wavelength. Finally, a camera mirror focuses the dispersed light, with
the help of a pick-off mirror, onto a CCD detector located at the camera mirror’s focal length.

All of the utility programs mentioned below are part of a custom software package written and provided by
Dr. Gray. The raw data is reduced using the R9 program which requires a dark field, a bias field and a flat field
to remove instrumental effects in the raw data from the CCD. Each of the 4096 columns is averaged over the
200 rows in bins of 10 to produce a final spectrum used in analysis. SPLT is used to normalize the full length
of the continuum in each spectrum to a value of 1. A total of six lines were selected for further analysis: 6231,
6233, 6238, 6248, 6253 and 6265 Å. These Fe I and Fe II lines were chosen because they are weak, unblended
and relatively insensitive to temperatures changes. The individual profiles are edited to remove spurious data
points and adjacent spectral lines by choosing reasonable values close or equal to the continuum. A spectral
line’s asymmetry can be easily visualized using a line bisector, which consists of the midpoints of horizontal
line segments extending across the profile.10 The BISM software program generates one bisector point for each
observed point on one side of the profile. Connecting the points results in the line bisector. Illustrations of line
bisectors are available in the Section 3.

The DISPER program is used to obtain an absolute wavelength scale for a spectral line relative to each
exposure. This is accomplished by analyzing the spectrum of two telluric lamps taken just prior to each star
exposure and two lamps taken just following. The telluric lines act as a stable, uncompromised reference spectrum
against which the Doppler shift of an astronomical body can be compared.11 Because the spectrum on the CCD
can shift from night to night, and even from exposure to exposure, the locations of the telluric lines must
be accurately determined before and after each exposure. To complete the DISPER program, the barycenter
correction must be taken into account. VSUN3 is used to compute the barycentric velocity using the input from
PHASER, PHIN.SC, which contains the date, time and length of each exposure. The PHASER program utilizes
PHIN.SC to phase the exposures according to a given period. In this case, the Cepheid variables’ respective
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periods, as given in Table 1, are used with PHASER to determine the phase coverage and for providing the
appropriate offset when plotting certain graphs.

The disk integration program, DSKI4, is necessary for developing models that fit each phase of an observed
spectral line. A series of model spectral lines is created by varying the following parameters: the projected
rotation velocity (Vrot sin i), the radial velocity (Vrad), the radial/tangential macroturbulence (ζRT ), the limb
darkening coefficient (uV ), and an isotropic factor that consists of macroturbulence, microturbulence and thermal
components (ζISO). The radial velocity has two contributions, the radial/tangential factor (VRT ) as well as the
isotropic factor (VISO). Both are weighted according to the given model input parameters then added together
to determine the true radial velocity. It is not necessary for the two radial velocity contributions to have
the same velocity shift in the presence of a velocity gradient through the Cepheid’s line-forming region.12 The
radial/tangential macroturbulence (ζRT ) affects mostly the core of a spectral line whose depth of formation is
much shallower than that of its wings, whose main contribution is the ζISO factor. Because of the velocity
gradient in the photosphere, the line’s core will typically have a larger absolute radial velocity than its wings
thus requiring a larger absolute VRT as compared to VISO. In over 86% of our models, |VRT | ≥ |VISO|. The
bulk of the remaining models occur in δ Cephei between the phases 0.95 and 0.35 and could be the result of a
lag between the collapsing higher layers and the deeper layers being suddenly driven to expand.

In order to reduce, or sometimes merely restrict, the number of free parameters in our models, many of the
variables are held constant for a particular star. These variables include the projected rotation velocity, the limb
darkening coefficient and the ζ ratio of the radial velocities, all discussed below in further detail.

The projected rotation velocity (Vrot sin i) must be used with great care in the models to achieve a proper fit.
Even without the Vrot sin i component, the spectral lines are significantly broadened with the proper isotropic
contributions, which incorporates the effects of thermal broadening thus acting as a single broadener from
multiple sources. To choose the proper projected rotation velocity, the spectral line must be selected when it
is at its narrowest. This occurs when there is little to no radial velocity broadening or simply when Vrad ≈ 0.
There is minimal radial velocity broadening twice in each phase, at maximum and minimum radius. Since we
are looking for the narrowest line, it makes sense to choose the observation closest to maximum radius where the
projected rotation velocity is at its smallest. Because ζISO affects mainly the wings of a spectral line and to a
lesser extent, the core, a rough but reasonable value for ζISO can be determined independent of Vrot sin i. Then
the projected rotation velocity can be increased until the core of the model spectral line is sufficiently broad to
match the observed spectral line. After introducing the radial/tangential macroturbulence (ζRT ) to improve the
model’s fit, the projected rotation velocity may be reduced slightly. This estimation for Vrot sin i is the value
used for the remaining models for that particular star. The process described above is illustrated in Figure 2.

There is a basic assumption made in the previous paragraph that must now be proven before continuing.
It was assumed that the projected rotation velocity remains constant over the entire phase of the pulsating
star. This can be verified by determining the change in angular velocity between maximum and minimum
radius. Using data from the Galactic Cepheid Database,13 ζ Geminorum is found to have a mean radius
RZG = 64.9R⊙ ≈ 4.51 × 107km. Using the data from Bersier et al.,14 Kervella et al. (2001)15 found ζ
Geminorum’s radius to oscillate by +3.0×106 km and −1.6×106 km from it’s radius at zero phase. These values
are later verified by our own calculations. The ratio and percent change can now be computed as follows:

Rmax

Rmin

=
4.81 × 107

4.35 × 107
= 1.10 (10)

% change =
Rmax − Rmin

RZG

× 100 = 10.% (11)

where Rmax and Rmin are the maximum and minimum radius. Using the equations for moment of inertia and
conservation of angular momentum, it can be shown that the ratio of maximum to minimum angular velocity is:

ωmax

ωmin

=
R2

max

R2
min

= (1.10)2 = 1.22 (12)
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Figure 2. The projected rotation velocity is a significant broadener in the core. Part (a) shows that in this case, the
value used for Vrot sin i should not exceed 6 km/s. Once the radial/tangential macroturbulence (ζRT ) is introduced to
improve the fit in part (b), the projected rotation velocity must be further limited to no more than 4 km/s.

thus giving a percent change in angular velocity of approximately 20%. The largest Vrot sin i used is 5 km/s for
δ Cephei thus resulting in a negligible (±1 km/s) change in the projected rotation velocity over its period.

The limb darkening coefficient is used for modelling a uniform disk as a star by linearly darkening the disk
as it approaches the edge or limb. This coefficient ranges between 0 and 1 where 0 signifies complete darkness
and 1 signifies no darkening. Typical values usually fall between 0.64 and 0.75 for Cepheid variables thus we
have chosen a value of 0.70 for all three stars. Nardetto et al.3 use a value of 0.6721 for ζ Geminorum however
when the limb darkening variable is modified by a few hundredths in DSKI4, there is no visible change between
spectral lines as seen in part (a) of Figure 3. This suggests that fine tuning this factor with respect to phase or
even from star to star will provide little to no benefit in the resulting pulsation velocity curves with our current
precision.
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Figure 3. (a) The limb darkening is set to values of 0.67, 0.70 and 0.73 in the DSKI4 modelling program but shows
no visible differences in the resulting spectral line. (b) Using weights of 0.1, 0.2 and 0.5, an accurate fit of the observed
spectral line can be obtained with each model.
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How the contributions of the two radial velocity components are weighted is very important to the shape of the
spectral line. The isotropic component is chosen to have a weight of 1.0 while the radial/tangential component is
varied between 0.1 and 0.5. Different weights are tested and, when possible, a constant weight ratio is used over
the entire phase for a particular star in an attempt to reduce the number of free parameters. Figure 4 shows the
effects of different weight ratios at radial velocities of 0 and -20 km/s. The ζ ratio becomes more important as
the difference between ζRT and ζISO increases. Because of the soft restrictions on the necessary ratio, a fairly
symmetric spectral line can usually be fitted with multiple models, each using a different weighting. An example
of this is illustrated in part (b) of Figure 3. This may result in slightly different parameters, as seen in Table 2,
however the resulting radial velocities are all well within the ±0.7 error bar limit for Vrad.
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Figure 4. In parts (a) and (b), the differently weighted model lines experience no radial velocity shift while (c) and (d)
see a shift of -20 km/s. Parts (a) and (c) show only a small dependence on the chosen ζ ratio while (b) and (d) are greatly
affected in the shape of the spectral line. This dependence is magnified as the difference between ζRT and ζISO increases.

More effects from systematically altering the variables in DSKI4 can be seen in Figure 5. The broadening of
a model spectral line is illustrated in part (a) by systematically increasing Vrot sin i while in part (b) the spectral
line is shifted by adjusting the radial velocity component. Part (c) uses the radial/tangential macroturbulence
as a broadener and part (d) broadens the spectral line using the isotropic components. Neither ζRT or ζISO was
specifically incorporated in Nardetto et al.’s3 toy model but were instead combined into an intrinsic width for
the line (σC).
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Model ζ ratio 0.1 0.2 0.5
Vrot sin i 4.0 4.0 4.0 ±0.8

VRT -0.5 -1.0 -1.0 ±0.5
ζRT 8.0 10.5 13.0 ±0.5
VISO -0.5 -0.5 0.0 ±0.5
ζISO 14.0 14.5 15.5 ±0.5
Vrad -0.5 -0.6 -0.3 ±0.7

Table 2. Different ratios can be used to fit the same spectral line however the resulting radial velocities are relatively
close.
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Figure 5. These spectral line models are produced by varying (a) the projected rotation velocity (Vrot sin i), (b) the
radial velocity (Vrad), (c) the radial/tangential macroturbulence (ζRT ), and (d) the isotropic components (ζISO).

3. ANALYSIS AND RESULTS

A total of 44 usable exposures have been obtained: 16 for δ Cephei, 11 for η Aquilae and 17 for ζ Geminorum.
Adequate phase coverage for each of the Cepheid variables is necessary to produce accurate and reliable results.
Figure 6 illustrates the phase coverage for δ Cephei, η Aquilae and ζ Geminorum.
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Figure 6. Phase coverage of δ Cephei, η Aquilae and ζ Geminorum. The diameter of the circles represents the phase
span of a typical two hour exposure.

Each of the spectral lines is normalized by setting the continuum to a value of 1 and the peak to a value
of 0. All of the remaining data points are then adjusted accordingly. This normalization allows the data to
be easily compared to the models produced using DSKI4, which is described in the previous section, however
some of the information is lost through this process. For example, an increase in temperature will increase the
Fe II to Fe I ratio thus resulting in less Fe I and shallower Fe I lines. At the same time there will be more Fe
II hence their spectral lines will become deeper. Fortunately, this change in temperature does not affect the
spectral line’s shape thus leaving the pulsation velocity curve unaffected. In order to reduce the amount of noise
in the exposures, several of the chosen spectral lines can be added together through averaging. The four Fe I
lines (6231, 6233, 6253 and 6265 Å) are similar enough to be averaged together, once normalized. The Fe II lines
(6238 and 6248 Å) are too broad as compared to the Fe I lines and as such, are not used for averaging.

Prior to the averaging technique, the spectral lines are converted from a wavelength to a velocity span using
equation (4). The values of the reference wavelengths are: 6230.74, 6232.65, 6252.57 and 6265.16 Å for the
four lines while the reference velocity is the systemic radial velocity, vγ , for each Cepheid. The velocities of the
spectral lines are now in the reference frame of their respective stars which is necessary when correctly fitting
with a model. The evolution of the averaged, normalized spectral line for each Cepheid (δ Cephei, η Aquilae
and ζ Geminorum) is displayed in Figure 7. The evident shifts in the spectral lines are a result of the changing
radial velocities, as are the asymmetries, both of which will be discussed in further detail.

The best fitting model is chosen by trial and error using the knowledge of how each variable affects a spectral
line at a given phase. Once a suitable model has been found, its parameters can describe the star’s physical
characteristics at that point in its phase. However, fitting all of the observed spectral lines with individual models
is very difficult and time consuming. Despite having a large number of free parameters to work with, sometimes
the model cannot be fitted perfectly to the observed data. Some examples of this can be seen for η Aquilae in
part (a) of Figure 8, where some parts of the model will not coincide with the observed data. In part (b), the
models for ζ Geminorum more accurately reflect the observed line with some exceptions near the continuum
as a result of blending. These two examples serve to illustrate the complex nature of fitting by hand and the
potential need for a more precise and robust method.
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Figure 7. Evolution of (a) δ Cephei, (b) η Aquilae and (c) ζ Geminorum’s normalized, averaged spectral lines in velocity
units. The ordinate represents the phase at each exposure’s continuum. Part (d) overlays ζ Geminorum’s observed
spectrum with the models produced by DSKI4.
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At certain stages in a Cepheid’s phase, namely maximum and minimum radial velocity, the spectral lines show
significant asymmetry. At its minimum radial velocity, the bisector is distinctly ”C” shaped while at maximum
radial velocity the bisector’s shape is inverted, looking more like a ”)” shape. This effect is illustrated in Figure
8 where the curvature of the bisectors has been magnified by a factor of two. The observed asymmetry is a result
of the star’s differentially expanding and contracting atmosphere. This implies that there will be a smaller radial
velocity at the formation depth of a spectral line’s wings (log τ ≈ −1) than at higher layers near the formation
depth of the core (log τ ≈ −3). Because the wings of the spectral line are significantly less shifted than the core,
the result is an asymmetric spectral line. Albrow at al.12 provide an example model to illustrate this point. At
a phase of 0.57, the velocity at the core’s depth of formation is ∼ 10 km/s while only ∼ 3 km/s at the formation
depth of the wings. The spectral line’s ”blue” wing is formed in a nearly static atmosphere with a significant flux
contribution while the ”red” wing makes no contribution due to the overlapping, redshifted core. The observed
core (∼ 5 km/s in this example) is a combination of the two major contributors.
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Figure 8. The sample models for (a) η Aquilae do not fit as well as the sample models for (b) ζ Geminorum. The
bisectors for both stars are magnified by a factor of two to clearly show their changes in curvatures with phase. Noise in
the continuum can impact the bisector above F/FC = 0.9 thus should not be considered reliable above this point.

Once the pulsation velocities are determined, the resulting points are plotted as a function of phase and
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Star Data Set vγ p Area ∆Ravg

[km/s] [106 km]
δ Cephei Stevenson -17.8 - -0.21 3.54

Barnes (2005) -17.8 1.36 1.28† 3.43
Bersier (1994) -17.8 1.36 -0.83† 3.42

η Aquilae Stevenson -15.8 - 0.05 4.59
Barnes (2005) -15.8 1.36 1.48† 4.57
Bersier (2002) -15.8 1.36 1.06† 4.43

ζ Geminorum Stevenson 5.8 - -0.09† 4.75
Nardetto (2006) 5.8 1.40 1.81 4.51
Bersier (1994) 5.8 1.36 0.01† 4.75

±0.5 ±0.10

Table 3. Values used for the systemic radial velocity, the projection factor (if necessary), and the resulting area for each
of the pulsation velocity curves. The amplitude of the radius variation, between Rmax and Rmin, is computed using our
technique for each of the pulsation velocity curves.

a cubic spline is used to fit the data with a curve then extrapolate a pulsation velocity between observations.
Integrating this velocity curve should result in a net area of zero, otherwise the star would not return to the
same state upon each cycle through its period. If the value is not zero then the systemic radial velocity (vγ)
can be adjusted accordingly and the models must be reproduced and refitted to the data thus resulting in a new
pulsation velocity curve and a new area. This process is repeated until an area of zero is reached. The final
pulsation velocity curves are illustrated in Figure 9 along with the extrapolated results from Barnes et al.,16

Bersier et al.14 and Nardetto et al.3 using the paramters listed in Table 3. For ζ Geminorum, the large gap in
phase coverage between 0.2 and 0.4 is overcome by using 2 data points from Bersier et al.14 Table 3 also lists
some numerical results from the final iterations.

In Figure 9, all of the ephemeris have been adjusted to the values specified in Table 1 while the periods have
been preserved as the values used in their respective papers. By choosing the same zero point, this removes
any horizontal shifts in the data due to less precise maximum intensity measurements. Some of these Cepheids’
periods, specially ζ Geminorum, change quite rapidly thus making it unsuitable to use the same period for
measurements that were taken several years apart.4 The small differences between the authors’ pulsation velocity
curves for a particular Cepheid can be attributed to errors in the different methods used for determining the
radial velocities. For example, our results are limited by our ability to model the observed spectral lines. Barnes
at al. use a standard star instead of a telluric lamp thus resulting in various sources of error which may include
an error in the adopted radial velocity of the standard star, uncertainty due to mispositioning of either star in
the spectrograph slit, and uncertainty due to potential differences in the velocity scales of Cepheids and the
mainsequence standards.16

Although an absolute radius is unobtainable using spectroscopy alone, the amplitude of the radius variation
is achievable and very useful when applied to the Baade-Wesselink method described in Section 1. The fitted
pulsation velocity curves in Figure 9 use an ordinate spacing of 0.01 periods. Using each Cepheid’s period, the
spacing is converted into a time interval (in seconds) and multiplied by its current pulsation velocity. These
results are then added up between maximum and minimum radius, or between roots in the pulsation velocity
curve, to determine the amplitude of radius variation (Rmax −Rmin) for each Cepheid. To increase the precision
by removing the effects of a nonzero area, both Rmax−Rmin and |Rmin−Rmax| are calculated using the positive
and negative portions, respectively, of the pulsation velocity curve then averaged to arrive at a final value, ∆Ravg.
ζ Geminorum’s radial amplitude is found to be (4.75 ± 0.10) × 106 km using vγ = 5.8 km/s. In comparison,
Kervella et al. (2001)15 computed an amplitude of 4.64 × 106 km using Bersier et al.’s14 data from 1994 with
vγ = 5.83 km/s and p = 1.36. Using our method of calculation with Bersier et al.’s data and nearly identical
parameters listed in Table 3, we still compute an amplitude of (4.75 ± 0.10) × 106 km. Differences in these

†Some of the closely spaced data points were removed to improve the cubic spline’s overall form
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Figure 9. Pulsation velocity curves for (a) δ Cephei, (b) η Aquilae and (c) ζ Geminorum with systemic radial velocities
of -17.8, -15.8 and 5.8 km/s.
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Star Stevenson Kervella (2001)15 Kervella (2004)1 Moskalik17

[106 km] [106 km] [106 km] [106 km]
δ Cephei 3.54 - - 3.40
η Aquilae 4.59 - 4.38 4.45

ζ Geminorum 4.75 4.64 4.90 4.68
±0.10 - ±0.8 -

Table 4. A comparison between our amplitude of radius variation results and other authors

results are likely due to Kervella et al.’s choice in period for ζ Geminorum. They use Π = 10.150079 instead of
10.149955 days as calculated by Bersier et al. using Equation 9. For all of the numerical calculations of ∆Ravg

refer to Table 3 and for more comparisons between other authors’ results see Table 4. The results from Kervella
at al. (2004)1 were computed using Equation 3 while Moskalik & Gorynya’s17 values are predicted results based
on calculations.

Integrating a pulsation velocity curve that has no effective area will give the change in radius as a function
of phase. The Cepheids’ radial displacement curves are plotted in Figure 10, where the variations are relative
to each star’s radius at maximum luminosity. By inspecting ζ Geminorum’s curve, it can be easily verified that
the amplitude of the radius variation, ∆Ravg = 4.75 × 106 km, as calculated above. As mentioned in Section
2, Kervella et al.15 found ζ Geminorum’s radius to oscillate by +3.0 × 106 km and −1.6 × 106 km from its zero
point. Our results indicate a much more symmetric oscillation of +2.53×106 km and −2.22×106 km about zero
but this difference is mostly a result of the chosen ephemeris for zero phase.
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Figure 10. Integrated radial velocity curves for δ Cephei, η Aquilae and ζ Geminorum with respect to their radii at
maximum luminosity. The curves’ amplitudes agree with the above numerical calculations of ∆Ravg.

4. CONCLUSIONS

Pulsation velocity curves have been developed for three Cepheid variables: δ Cephei, η Aquilae and ζ Geminorum,
using models created by a custom software package. No hydrodynamics are used nor are they required to create
acceptable models that accurately fit the observed data. The resulting physical parameters are thus a product
of geometric arguments which completely bypass the complicated physics that occur within the star. The
pulsation velocity curves are compared against results from Barnes et al., Bersier et al. and Nardetto et al. with
acceptable agreement. An important difference, however, is that our results have been achieved without the use
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of a projection factor, p. All of the major contributors of line broadeners and sources of asymmetry have been
taken into account. As such, our unaltered pulsation velocity curves are consistent with previously published
results and have only slightly larger error bars.

Using the pulsation velocity curves created by our unique modelling method, the amplitude of radius variation
(∆Ravg = Rmax −Rmin) has been determined for each of the Cepheids. The amplitudes for δ Cephei, η Aquilae
and ζ Geminorum are 3.54 × 106 km, 4.59 × 106 km and 4.75 × 106 km, respectively. These results coincide
with those from Barnes and Bersier, using the parameters in Table 3, with differences of < 3.5% or within
0.16×106 km. The difference in results from the data provided by Nardetto are slightly larger at 5%. They used
a projection factor of 1.40 and line centroid based methods for calculating pulsation velocities, thus resulting in
an amplitude of 4.51 × 106 km for ζ Geminorum. The error in our results is ±0.10 × 106 km.

At this point, more observations and better phase coverage are needed to improve the accuracy and precision
of our results. The current errors can be decreased by averaging results within a given phase interval or by
devising a more robust method for modelling the observed spectral lines.
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Phase JD S/N‡ Lines§ ζ Ratio¶ VRT ζRT VISO ζISO Vrot sin i Vpuls Filename Observer‖

[km/s] [km/s] [km/s] [km/s] [km/s] [km/s]
0.0473 13902.684 363 4 0.2 -20.0 4.0 -23.0 10.5 5.0 -22.50 JN1506v.077 KBS
0.2576 13930.644 326 4 0.2 -7.5 5.5 -9.0 9.5 5.0 -8.75 JL1306v.095 KBS
0.3212 13925.619 155 4 0.2 -2.0 5.0 -4.0 10.5 5.0 -3.67 JL0806v.093 KBS
0.4539 13845.836 300 4 0.3 8.5 6.0 6.0 11.0 5.0 6.58 AP1906v.066 KBS
0.4701 13679.566 302 4 0.2 9.5 5.0 8.0 10.5 5.0 8.25 NO0405v.002 KBS
0.5864 13878.745 182 4 0.2 17.5 5.0 15.0 11.5 5.0 15.42 MY2206v.073 KBS
0.6289 13932.636 167 4 0.2 20.0 6.0 18.0 12.0 5.0 18.33 JL1506v.099 KBS
0.6532 13916.668 139 4 0.2 21.5 5.0 20.5 12.5 5.0 20.67 JN2906v.082 KBS
0.7111 13841.850 143 4 0.2 27.0 5.0 25.0 12.5 5.0 25.33 AP1506v.055 KBS
0.7761 13922.694 225 4 0.2 28.5 6.0 26.0 14.5 5.0 26.42 JL0506v.089 KBS
0.7808 13686.600 253 4 0.2 28.5 6.0 26.0 14.5 5.0 26.42 NO1105v.007 KBS
0.7980 13686.692 312 4 0.2 27.0 6.0 24.0 14.5 5.0 24.50 NO1105v.008 KBS
0.8181 13933.652 217 4 0.2 22.0 7.0 19.0 15.5 5.0 19.50 JL1606v.104 KBS
0.8641 13917.800 281 4 0.2 -3.0 9.5 -2.0 15.0 5.0 -2.17 JN3006v.086 KBS
0.8980 13842.853 191 4 0.2 -16.5 5.0 -16.0 13.0 5.0 -16.08 AP1606v.060 KBS
0.9837 13923.808 275 4 0.2 -22.0 4.0 -25.0 10.0 5.0 -24.50 JL0606q.217 DFG

±0.5 ±0.5 ±0.5 ±0.5 ±1.0 ±0.71

Table 5. Observational data for δ Cephei

‡Signal to noise ratio for the given exposure
§Number of spectral lines used when averaging
¶Weighted ratio of ζRT and ζISO
‖Observations made by Kevin B. Stevenson (KBS), Dr. David F. Gray (DFG) and Kevin Brown (KB)
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Phase JD S/N‡ Lines§ ζ Ratio¶ VRT ζRT VISO ζISO Vrot sin i Vpuls Filename Observer‖

[km/s] [km/s] [km/s] [km/s] [km/s] [km/s]
0.1075 13933.744 283 4 0.5 -24.0 7.0 -21.0 16.5 0.0 -22.00 JL1606v.105 KBS
0.3188 13662.547 332 4 0.1 -13.0 7.0 -9.0 13.0 0.0 -9.36 OC1805q.183 DFG
0.4070 13892.834 346 4 0.1 -2.0 13.0 -3.5 12.5 0.0 -3.36 JN0506j.932 KB
0.4557 13878.830 261 4 0.1 7.0 13.0 -2.0 13.5 0.0 -1.18 MY2206v.074 KBS
0.5804 13922.785 211 4 0.1 12.0 13.0 4.5 13.0 0.0 5.18 JL0506v.090 KBS
0.6571 13686.505 178 4 0.2 19.0 6.0 13.0 16.0 0.0 14.00 NO1105v.006 KBS
0.6885 13930.738 302 4 0.2 23.0 5.0 18.0 13.5 0.0 18.83 JL1306v.096 KBS
0.7102 13923.717 246 3 0.5 26.0 7.0 19.5 16.0 0.0 21.67 JL0606q.216 DFG
0.7928 13902.779 251 4 0.5 34.0 7.0 30.0 18.0 0.0 31.33 JN1506v.078 KBS
0.8731 13917.709 214 4 0.2 31.0 9.0 24.0 19.0 0.0 25.17 JN3006v.085 KBS
0.9669 13932.735 298 4 0.1 -13.0 6.0 -13.0 16.5 0.0 -13.00 JL1506v.100 KBS

±0.5 ±0.5 ±0.5 ±0.5 +0.5 ±0.71

Table 6. Observational data for η Aquilae

Phase JD S/N‡ Lines§ ζ Ratio¶ VRT ζRT VISO ζISO Vrot sin i Vpuls Filename Observer‖

[km/s] [km/s] [km/s] [km/s] [km/s] [km/s]
0.0090 13834.597 272 4 0.2 -15.5 5.0 -15.0 12.0 4.0 -15.08 AP0806v.042 KBS
0.0941 13845.609 302 4 0.5 -16.5 6.0 -15.0 12.5 4.0 -15.50 AP1906v.062 KBS
0.1202 13825.577 273 3 0.5 -15.5 6.5 -14.0 12.5 4.0 -14.50 MR3006v.036 KBS
0.1376 13815.604 210 3 0.5 -14.0 8.0 -11.5 12.0 4.0 -12.33 MR2006v.029 KBS
0.1466 13815.696 143 4 0.5 -13.0 7.5 -11.5 12.0 4.0 -12.00 MR2006v.030 KBS
0.4504 13686.842 258 4 0.5 21.5 6.5 17.5 14.0 4.0 18.83 NO1105v.010 KBS
0.5601 13799.594 261 4 0.2 22.5 7.0 17.0 16.0 4.0 17.92 MR0406j.879 KB
0.5720 13860.609 160 4 0.2 20.0 6.0 17.0 16.5 4.0 17.50 MY0406Q.202 DFG
0.6538 13810.694 311 4 0.2 8.0 11.0 4.0 15.5 4.0 4.67 MR1506v.021 KBS
0.6988 13841.598 204 4 0.5 -2.5 14.0 -0.5 15.0 4.0 -1.17 AP1506v.051 KBS
0.7272 13821.589 305 4 0.5 -6.0 13.0 -4.0 14.5 4.0 -4.67 MR2606j.894 KB
0.7704 13679.940 237 4 0.2 -7.0 8.5 -7.5 13.0 4.0 -7.42 NO0405v.005 KBS
0.8426 13812.610 257 3 0.2 -8.5 7.0 -8.0 12.0 4.0 -8.08 MR1706v.024 KBS
0.8523 13812.709 234 4 0.2 -9.5 7.0 -8.5 12.0 4.0 -8.67 MR1706v.025 KBS
0.9216 13762.667 257 4 0.2 -10.5 5.5 -9.5 12.5 4.0 -9.67 JA2606Q.192 DFG
0.9303 13762.756 249 4 0.2 -10.5 5.5 -10.0 12.0 4.0 -10.08 JA2606Q.193 DFG
0.9958 13844.612 342 4 0.2 -15.0 5.0 -14.0 12.5 4.0 -14.17 AP1806q.196 DFG

±0.5 ±0.5 ±0.5 ±0.5 ±0.8 ±0.71

Table 7. Observational data for ζ Geminorum
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