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In short-exposure imaging through turbulence, there is some probability that the image will be nearly
diffraction limited because the instantaneous wave-front distortion over the aperture was negligible. A
number of years ago in a rather brief paper, Hufnagel (1966) argued heuristically that the probability of
getting a good image would decrease exponentially with aperture area. This paper undertakes a rigorous
quantitative analysis of the probability. We find that the probability of obtaining a good short-exposure
image is Prob = 5.6 exp[—0.1557 (D/rp)*] (for D/ry > 3.5), where D is the aperture diameter and r, is the
coherence length of the distorted wave front, as defined by Fried (1967). A good image is taken to be one
for which the squared wave-front distortion over the aperture is 1 rad® or less. The analysis is based on the
decomposition of the distorted wave front over the aperture, in an orthonormal series with randomly
independent coefficients. The orthonormal functions used are the eigenfunctions of a Karhunen-Logve
integral equation. The integral equation is solved using a separation of variables into radial and azimuthal
dependence. The azimuthal dependence was solved analytically and the radial, numerically. The first 569
radial eigenfunctions and eigenvalues were obtained. The probability of obtaining a good short-exposure
image corresponds to a hyperspace integral in which the spatial dimensions are the independent random
coefficients in the orthonormal series expansion. It is equal to the probability that a randomly chosen point
in the hyperspace will lie within a hypersphere of unit radius, the points in the hyperspace being randomly
chosen in accordance with the product of independent Gaussian probability distribution—one distribution for
each dimension. The variance of these distrbutions is directly proportional to the eigenvalues of the
Karhunen-Loéve equation. This hyperspace integral (involving up to several hundred dimensiewsi hasgbeem

evaluated using Monte Carlo techniques.

1. INTRODUCTION

Atmospheric turbulence distorts a wave passing through
it so that an image of an object seen through such turbu-
lence may be degraded significantly below the diffraction
limit of the imaging system’s aperture. The length 7,
which is determined by the strength of turbulence over
the propagation path, the path length, and the wave-
length sets the achievable resolution. Whereas the dif-
fraction-limited resolution might be considered to be
A/D, the turbulence-limited resolution is equal to A/7.
No matter how large the aperture is, the average reso-
lution achieved on imaging through turbulence will not
exceed the A/, limit. This characterizes what is often
referred to as the long-exposure image resolution. [For
very short exposures, somewhat better average resolu-
tion, A/(3.47,), is possible. ]

This turbulence limit is a limit on the average per-
formance. It is significant to note that at each instant
of time a randomly distorted wave front is received by
the imaging system aperture, and the randomly distorted
and spread image is formed. The average resolution
A/ry refers to the average effect of this distortion and
spreading. At some instant of time, the instantaneous
distortion of the wave front may be very severe, i.e.,
there will be a great deal of “corrugation” of the wave
front. At other moments, the wave-front distortion may
be relatively slight. There is a finite probability that
at some particular instant of time, the wave-front dis-
tortion will be almost negligible. A short-exposure
image formed at that time will appear to be almost dif-
fraction limited. The question we address in this paper
is what is the probability that at a particular instant of
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time the wave-front distortion over tne imaging system
aperture will, in fact, be almost negligible. The in-
verse of this probability is the average number of short-
exposure pictures we have to take to get a good one.

A number of years ago, this question was briefly ad-
dressed by Hufnagel.! He utilized rather heuristic ar-
guments, considering speckle in the focal plane, the
average spread, image size, and the Rayleigh distribu-
tion of speckle, and based on these considerations argued
that the probability of getting a good image ought to vary
as a negative exponential function of the aperture diam-
eter squared. Because the arguments were heuristic,
he was not able to provide meaningful constants for this
relationship. We shall show in this paper that the prob-
ability of getting a good image, i.e., the probability that
at some instant the wave-front distortion over the imag-
ing system aperture is essentially negligible, is a nega-
tive exponential function of the aperture diameter over
¥y ratio squared, for aperture diameters larger than
about 3.57%,. (Here 7y is the turbulence-limited coher-
ence diameter, as defined by Fried.?) We shall show
that the probability of getting a good image is adequately
represented by the expression

Prob~ 5,6 exp[—0.1557 (D/7g)%].

In Sec. II, we shall outline our approach to a rigorous
analysis of this problem. The sections after that will
then present the various phases of the analysis and nu-
merical computations.

II. ANALYTIC APPROACH
The basis of our treatment of the problem of calculat-
ing the probability of getting a good short-exposure image
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is through a decomposition of the random wave front into
an orthonormal series of independent components. By
developing the statistics of this series representation,
we are then able to calculate the probability that a par-
ticular sample of the wave-front distortion will corre-
spond to essentially no significant distortion. This is be-
cause of the fact that a sample in which the wave -front
distortion is essentially negligible has a series repre-
sentation in which the coefficients are all very small.

It is thus simply a matter of calculating the probability
that all of the coefficients of the orthonormal series at
some instant of time will be very small.

To carry out the detailed analysis required, we start
with a functional representation of 2 sample of a random-
ly distorted wave front over the imaging system aperture.
Because wave-front tilt, as distinguished from the high-
er-order forms of wave-front distortion, i.e., from
wave-front corrugation, does not degrade the resolution
of the image of a point source (in a short-exposure), but
merely shifts it, we calculate the average wave-front
tilt of this random sample and subtract it from the ran-
dom wave-front distortion. The difference is the ef-
fective wave-front distortion, whose statistics we are
concerned with.

Having established the function representation for the
effective wave-front distortion, we then wish to decom-
pose this tilt-free randomly distorted wave-front sample
over the aperture in terms of some orthonormal series.
There are many possible orthonormal series which can
be defined for uniform weighting over the aperture. The
expression for the decomposition of the tilt-free wave-
front distortion is essentially the same no matter which
series we use. The basic expression that calculates the
coefficients for the series representation of the tilt-free
wave front is a weighted integral of the random tilt-ifree
wave-front distortion function. As a consequence of the
fact that the tilt-free wave-front distortion is a Gaussian
random function, the coefficients of the series are Gauss-
ian random variables, since the integral expression is
a linear function of the distortion function.

We select which of the infinity of possible orthonormal
series is to be used in this decomposition by imposing
the requirement that the random coefficients should be
statistically independent of each other. Through ap-
propriate manipulations, we are able to show that this
requirement gives rise to a definition of the functions
in the orthonormal series in terms of the Karhunen-
Loéve integral equation. The kernel of the integral equa-
tion is expressible as a function of the statistics of wave-
front distortion. The Karhunen-Loéve integral equationis
homogeneous and gives rise to a set of eigenvalues, one
for each of the eigenfunction solutions. The eigenfunc-
tionsare the functions that make up the orthonormal set.
The eigenvalues are proportional to the mean square val-
ue of the random coefficients in the orthonormal seriesde-
composition of the tilt-free random wave-front distortion.

The evaluation of the eigenvalues, and thus of the mean
square random coefficients, is the key to the evaluation
of the probability of getting a good short-exposure image.
The random coefficients; as we noted before, are Gauss-
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ian random variables. Their mean values are zero,
and thus their mean square values, which are calculated
from the eigenvalues, are their variances—which com-
pletely define the distribution of expected values ofthese
random coefficients.

The significant point will be established that the mean
square wave-front distortion averaged over the aperture
for a particular sample of the randomly distorted wave-
front is directly proportional to the sum of the squares
of the random coefficients for the wave -front sample.
Thus, the probability of getting a good short-exposure
image is reduced to the calculation of the probability that
all of the random coefficients will at some instant havea
small enough magnitude. We take as our criterion for
small enough wave-front distortion the requirement that
the tilt-free wave-front distortion squared, averaged
over the aperture, will be less than or equal to one ra-
dian squared. This leads directly toa constraint on the
sum of the squares of the random coefficients. Since we
know the probability distribution for all of the random
coefficients, it is a straightforward matter to then cal-
culate the probability that their values squared and
summed will be appropriately bounded.

In the following work, we rely on analytic techniques
to develop the Karhunen-Logve integral equation and the
basic expression defining its kernel, and similarly rely
on analytic techniques for the formulation of the prob-
ability integral we wish to evaluate. The solutions of
the Karhunen-Loéve integral equation to obtain the eigen-
values (and the eigenfunctions) and the evaluation of the
probability integral are of necessity carried out numer-
jcally. InSec. III, we start the analysis treating the
formulation leading up to the expression of the Karhunen-
Loéve equation.

[1l. DEVELOPMENT OF THE KARHUNEN-LOEVE
EQUATION

We shall let ¢ (r) denote the random phase at a point
r associated with the random wave front distortion at the
aperture of the imaging system. Hererisa two-dimen-
sional variable denoting position in the plane of the imag-
ing system aperture. We use the function W(r, D),
where

\1, if |r|=%iD,
W(r, D)= 1)
0, if |r|>tD,

to define a circular aperture centered at the origin and
having a diameter D. Drawing on our previously pub-
lished results, Fried,® we can write for the correspond-
ing average phase over the aperture ?,

o=G ﬁDz}"fdr W(r, D)¢ (1), (2)
and for the average tilt over the aperture &,
a= (@7 DY fdr W(z, D)ré(r). (3)

The effective wave-front distortion, as far as the quality
of the image is concerned, is the random wave-front dis-
tortion ¢ (r), less the average phase and a linear function,
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a - r, corresponding to the average tilt. The effective
wave-front distortion, ¢(r;D) is given by

@(r;D)=¢(r)—¢ —a-r. (4)

(We note that since ® and « are functions of D, it is ap-
propriate to show ¢ as having a D dependence. )

The statistics of the random wave -front distortion ¢(r)
is adequately described for our purposes in terms of the
phase structure function D, where

D(|r=r')=(lo @) -0 ) |?. (5)

For our calculations, all relevant theory concerning
propagation through turbulence is adequately represented
by taking note of the -i—-puwer dependence established by
Tatarski® for the phase structure function. This is con-
veniently represented by the expression given by Fried

D(|r-r’|)=6.88(|r =1’ | /7)*>. (6)

The mean square difference of random phase is seen to
vary as the % power of the separations of the points at
which the phase is measured. The quantity 7, which
as we noted earlier is determined by propagation con-
ditions, is given by the expression

o= (0. 423 k* lm ds C} (s/L}s"’)-m, @

where CZ is the refractive-index structure constant (a
measure of the optical strength of turbulence along the
propagation path), L is the total propagation path length,
and s runs from zero at the (point) source to L at the
aperture plane, where 7, is measured. ¥g determines
the actual “magnitude” of the wave-front distortion.

What we are ultimately going to be concerned with is
the covariance function for the effective wave-front dis-
tortion ¢(r; D). This covariance function is given by the
expression

C,(|r-r'

;s D)=(@*(x; L) @(x'; D). (8)

It can be evaluated in terms of the structure funct'on ©
by making use of Egs. (2), (3), (4), and (5). We shall
return later to the evaluation of the covariance function
Gy

We consider an orthonormal series {f,(r; D)}, where
£, is the nth-term in the orthonormal series. Because
the terms are orthonormal with uniform weighting over
the aperture area, it follows that

. 1, ifn=n',
Jaz W(e, D)f,(x; D) fulr; D)= (©)
0, ifn#n'.

Since the orthonormal series is by definition complete,
we can represent the effective wave-front distortion ¢
in terms of a series based on {f,}. Thus we write

@(r; D)= B, f(r; D). (10)

Inasmuch as the effective wave-front distortion ¢ is a
random function, we expect the coefficients of the series
B, to be random variables. If we multiply both sides of
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Eq. (10) by f*(r; D) and integrate over the aperture, then
making use of Eq. (9), we obtain the result
,= Jar Wi; D)/ (v, D) @(x: D). (1)

This is the standard expression for the coefficients in
any type of orthonormal series decomposition.

We note that since the coefficient 8, is a linear func-
tion of the effective wave-front distortion, ¢(r; D), and
since the effective wave-front distortion is a Gaussian
random function, it follows that B, is a Gaussian random
variable. [Note: Propagation theory, cf. Tatarski,*
tells us that the wave-front distortion ¢ is a Gaussian
random function. From Egs. (2) and (3), it follows that
6 and @, which are linear functions of ¢, are Gaussian
random variables. Since the linear combinationof Gauss-
ian random functions and Gaussian random variables
gives rise to a Gaussian random function, it follows
from Eq. (4) that ¢ is a Gaussian random function. ]

At this point, we are ready to introduce the require-
ment that the random variables B, be statistically inde-

pendent. We write this as
x o\ )BAD), ifn=n',
(Bn B = {0, if n#n’, (12)

where B2(D) is the variance associated with the random
variable 8,. We show B? as a function of D, since, as
will be seen, the magnitude of the random variable B,
is dependent on the aperture diameter.

Equation (12) provides the basis for developing equa-
tions which define the orthonormal series {f,(r; D)}. To
do this, we define the quantity & in accordance with the
equation
6= fax' we', D) g '; D)o 5 D4, D)). (13)
By the simple procedure of interchanging the order of
integration and ensemble averaging, and making use of
Eq. (8), we can recast Eq. (13) in the form

6=fdr' W(r', D)C,(|r —1'|; D)f,(x’; D). (14)

Starting from Eq. (13), and making use of Eq. (10)
to allow replacement of ¢*(r’; D), we obtain

s=< dr’ W(r'; D) ¢ (r; D)

XS BL L DA D)). (15)

By the expedient of interchanging the order of summa-
tion and integration, and then making use of the ortho-
normal property expressed in Eq. (9) to allow the inte-
gral to be evaluated, we can cast Eq. (15) in the form

6= (p(; DIZA, far' Wa', DI ' DA )

={p(x; D) BX).
Now if we again make use of Eq. (10) to replace ¢ by

(16)
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its series representation, and then interchange the order
of summation and ensemble averaging, and finally make
use of Eq. (12) to facilitate performance of the n’ sum-
mation, we obtain

§=(3Aetuts D ) =3 fe (53 DA 870 = B (53 D).
[ g

(17)
Equating the right-hand side of Eqs. (14) and (17), we
obtain the Karhunen-Logve homogeneous integral equa-
tion

jdr' W', D)C, (| r —1'|; D), (' D) = BAD)fo(x; D). (18)

Our problem at this point is to solve the integral equation
for the eigenfunctions f,(r; D), and the corresponding
eigenvalues B,(D).

IV. REDUCTION AND SOLUTION OF THE
KARHUNEN-LOEVE INTEGRAL EQUATION

The kernel of the Karhunen-Loeve integral equation,
Eq. (18), can be written in the form

c,(|r-r';D)=(o(x) = —a- r*[6(x) - —a-'D
~(o*(D)b (") — (0*(1)B) - (6 (r')*) +(6*)
—(o*(r) a- ) —(p()a* - ) +{F*a- T

+@a-)+(a*-Ta- ). (19)

If we make the change of variables
x=r1/D, (20a)
x'=r'/D, (20b)

we find that the D and 7, dependence of the kernel can be
extracted, and we can write

C, (|x =x'|; D)= (D/7of" G (|x =x'[). (21)
If we further write
folr; D)=T (X), (22)
B2(D)=D¥D/7r))""* B, (23)
1, if |x] =4
W(r; D) =B(x) = (24)
0, if |x| >4,
then we can recast Eq. (18) in the form
Jaxa )6 (% -x'|) §a(x") =8 Ba®)- (25)

The key to this extraction of the D and 7, dependence
from the Karhunen-Logve integral equation is our ability
to extract a (D/7o)¥'® from C,, as expressed in Eq. (21).
After considerable algebraic manipulations, starting
from Eq. (19), and making use of Eq. (6), as appropriate,
we find that we can write C, in the form

C,(|r-1'|; D)

= (D/7o"4~Gy(|(x/D) = (x'/D)|) + (/D)
+®&,(r'/D) =8, + (r'/D) cos 6'®4(¥/D)
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+(r/D)cos8’ G(r'/D) - (r/D)(r'/D) cos 8’8}, (26)
where
®o(x) = 3.44 /2, (27a)
®,(x) =3. 44 (km)™ J' U2 gyt 1
0
X Jﬂ A6’ (x2+x'"2 = 2xx" cos 6")¥'°, (27b)
0
B =[x 510, (27c)
©y0)=3.44 (g [ dx 572" a6 cos "
0 0
X (x% 422 =2 xx" cos8'")*'S, (274d)
®, (x) =64 f L2 gpr x 11268 (x11)., (27e)
0

This constitutes the basis for writing C, in the form
shown on the right-hand side of Eq. (21).

Gathering all these results together, we would write
G for use in Eq. (25) in the form

6(|x -x’ |) =®(|x =x'[) +G(x) +0,(x") -6,
+x’ cos 8", (x) + x cos 6’ (x") —xx' cos8'®,.(28)

The quantity 6’ appearing in Egs. (26) and (28) repre-
sents the angle between the vectors r and r’, and also
between the vectors x and x’.

Equation (25) is now essentially ready for us to start
work on developing its solutions. Examination of the
kernel and cognizance of the awkward powers involved
(i.e., the % power and the & power) makes it clear that
an analytic solution is not likely, and that numerical
techniques will be necessary. The fact that the integral
equation involves a two-dimensional integral makes the
task an exceedingly difficult one for a digital computer.
However, it is not strictly necessary to work with the
two-dimensional integral equation, and in fact, we can
cast our job in terms of obtaining a solution to a one-
dimensional integral equation. To do this, we make use
of the fact that working in (x, 8) polar coordinates where

x= (x, 6), (29)

we can show that a separation of variables is possible
according to which &,(X) can be expressed as a product
of a function of x and a function of §. Moreover, We can
show that the function of 6 is an exponential. We write

¥, (x) =3 (x) exp(iq 6). (30)

We shall see that it is a member of an orthonormal set
defined by a Karhunen-Logve one-dimensional integral
equation, where R, ,(x) is a radial function to be deter-
mined.

Where previously » was an ordinal number arranging
the eigenfunctions and eigenvalues, we now replace it
with the ordinal number pair (p, q)

n= (b, q), (31)
where ¢ is the ordinal number for the azimuthal depen-
dence. There is a different set of radial functions for
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each azimuthal dependence—hence the g associated with
Ri(x). p is the ordinal number for the various radial
functions in a given set associated with a particular g.

To show that Eq. (30) is valid, it is merely necessary
to substitute it into the left-hand side of Eq. (25) and
show that the results can be cast in a form which is con-
sistent with the right-hand side of Eq. (25), as interpret-
ed in terms of Eq. (30), i.e., we show consistency in
our assumption. [Because the functions R, .(x) and
exp(ig6) define complete sets, this is a necessary and
sufficient proof. | To proceed, we define the modified
kernel

R (x, x)=x'[7 a0'g (x, 5", 0 exp(igd), (32)
0
and the alternate notation for the eigenvalue
B:=%B; . (33)

Now, substituting Eq. (30) into the left-hand side of Eq.
(25), we get

Jfax' B 5| % - x| 8, x)

=ff2dx’ x’jadﬂ' G, &, 6" = BfR,q(x") exp(ig 8')
0

= exp(ig 9)'[:';2 dx’'f,(x, x)R3(x")

=85, RY(x) exp(ig 6).

We note that in the last form presented in Eq. (34),
the result interpreted in terms of Eq. (30) is consistent
with the right-hand side of Eq. (25). This proves the
validity of the separation of variables expressed by Eq.
(30). In developing the final result in Eq. (34), we have
made use of the fact that the final dx’ integral is simply
a function of x.

(34)

The function®§, which is the radial dependence of &,
as indicated in Eq. (30), is defined by the requirement
that it satisfy the one-dimensional homogeneous integral
equation

U2

f ax'R,(x, X )RI(') = BE RI(x). (35)
0

The key point here is, of course, our freedom to choose

?§ to satisfy this equation and use the functions so defined
in Eq. (30).

We note that the kernel of this one-dimensional homo-
geneous integral equation can be written in terms of the
functions defined in Eqs. (27a)-(27e). If we substitute
Eq. (28) into Eq. (32) and perform what simplifications
are possible, we obtain

Rox, x') =~ x'Lz' 48" @([x%+x"%~ 2xx cos 6']V?)
+ 21’ [®, (%) + @, (") = &, ], (36a)

R,,(x, x')=x' _[:’ 46" Gy([x2+ x"2 — 2xx" cos 8] exp(i 6)
+T X [%' @ 4 (%) + Gy (x") = xx' O], (36b)
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£.(x, x")= x'f“ Oo([x%+x"2 = 2xx" cos8']Y/?) exp(ig 6),
0

g=+2,+3,34, .... (36c)

Our problem now is the solution of the one-dimensional
homogeneous integral equation presented by Eq. (35),
with the kernel defined by Egs. (36a), (36b), or (36c).

For our numerical analysis, we have carried out this
solution for the first 42 values of ¢, i.e., ¢g=0 to g=41,
using a 20-point radial space in the interval 0 to 3. Sort-
ing the eigenvalues in accordance with their magnitude,
we find that we have obtained at least the first 569 of the
eigenvalues. (Though more than 569 eigenvalues were
actually calculated, we have no assurance that the p =1,
g =+ 42 eigenvalue which we did not obtain does not rank
above the 570th of the eigenvalues that we did obtain.

We are, however, sure that it is smaller than the 569th
eigenvalue which is for p=1, g=41. Hence our termina-
tion of the list at that point.) As a check on the accura-
cy of our calculations and the completeness of our list,
we have been able to separately show, making use of
earlier work, Fried,® quite distinct from this Karhunen-
Loéve decomposition, that the infinite sum of eigenval-
ues must have the value of

B,=0.1056,
= (37a)

We note that

fgﬂ:o.mw:o.gglsza, (37b)

n=]l
which gives us fairly strong assurance that our list is
essentially complete and our computations reasonably
accurate. In Table I, we list these eigenvalues andtheir
cumulative sum for the first 100 eigenvalues. We note
that becuase the integral equation and kernel are sym-
metric between g and —¢, it is not necessary for us to
solve with negative values of g. The eigenvalues ob-
tained for all values of ¢ other than g=0 are doubly de-
generate since they correspond to both +¢g and —g. Ac-
cordingly, in Table I we have counted twice those eigen-
values for which ¢ is not equal to zero, though they are
listed only once, and the cumulative sum as shown cor-
responds to the double addition of those eigenvalues.

With the eigenvalues thus tabulated, we are ready to
turn our attention to the formulation and evaluation of
the probabilistic integral determining the probability
that at any instant the random wavefront distortion will
yield a good short-exposure image.

V. PROBABILITY FORMULATION AND EVALUATION

The square of the effective wave-front distortion,
@(r; D), averaged over the aperture can be written
a?=(10% [dar Wir, D)| @ (x; D). (38)
If we use Eq. (10) to replace ¢ in Eq. (38), and then in-
terchange the order of summation and integration, we
get
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TABLE 1. Eigenvalue listing, ®=%} .. Eigenvalues are
ranked by magnitude, with ordinal number » assigned accord-
ing to rank. Where the eigenvalue is degenerate (i.e., g =0),
two values of n are assigned. This is indicated in the (p,q)
numbering by listing both a positive and a negative value for g.
The p values shown for each eigenvalue represent an ordinal
ranking by magnitude for each value of the azimuthal number
g. The eigenvalues are listed along with the cumulative sum
of the eigenvalues. Whenever the eigenvalue is degenerate, the
corresponding cumulative sum represents the addition of the
eigenvalue twice.

n Eigenvalue Cumulative sum p g
He n
n E‘Qﬁ
i=1

1, 2 0. 018765000 0. 037530000 1 2 -2

3 0.018733000 0.056263000 10

4, 5 0.005215500 0.066694000 13 =3

G 0.005180000 0.077054000 11, -1

8, 9 0, 002153400 0. 081360800 14, =4
10, 11 0.001645600 0. 084652000 2.2 =2
12 0.001632200 0.086284200 20
13, 14 0.001084800 0. 088453800 1 5 -5
15, 16 0.000773650 0.090001100 2 3, =3
17, 18 0, 000757140 0.091515380 21, =1
19, 20 0.000617730 0. 092750840 16, —6
21, 22 0.000428150 0.093607140 2 4, =4
23, 24 0.000382540 0.094372220 17, =7
25, 26 0.000382130 0.095136480 3 2, -2
27 0.000373790 0.095510270 3 0
28, 29 0.000262110 0.096034490 2 5, =5
30, 31 0.000251910 0.096538310 18, —8
32, 33 0.000224370 0.096987050 3 3 =3
34, 35 0.000215100 0.097417250 31, -1
36, 37 0. 000173860 0, 097764970 19 -9
38, 39 0.000172040 0.098109050 2 6, -6
40, 41 0.000143750 0.098396550 3 4, —4
42, 43 0.000133880 0.098664310 1 2, -2
44 0.000129880 0.098794190 4 0
45, 46 0.000124560 0.099043310 1 10, =10
47, 48 0, 000118870 0.099281050 2 7, =7
49, 50 0.000097881 0.099476812 3 5, =9
51, 52 0. 000091963 0. 099660738 111, -11
53, 54 0. 000089079 0.099838896 1 3, =3
55, 56 0.000085452 0.100009800 2 8, =8
57, 58 0. 000084808 0,100179416 4 1, =1
59, 60 0. 000069736 0.100318888 3 6, -6
61, 62 0. 000069646 0.100458180 1 12, =12
63, 64 0. 000063398 0.100584976 2 9 -9
65, 66 0, 000062420 0.100709816 b4, —4
67, 68 0. 000058784 0.100827384 5 2, —2
69 0. 000057899 0.100885283 5 0
70, 71 0. 000053855 0.100992993 1 13, =13
72, 73 0. 000051459 0.101095911 37, =7
T4, 75 0.000048271 0.101192453 2 10, =10
76y 77 0.000045524 0.101283501 4 b, =5
78, 79 0.000042494 0.101365489 5 3, =3
80, 81 0,000042428 0.101453345 1 14, =14
82, 83 0.000041356 0.101536057 51, =1
84, 85 0.000039058 0.101614173 3 8, —8
86, 87 0, 000037553 0.101689279 2 11, =11
88, 89 0, 000034265 0.101757809 4 6, =6
90, 91 0.000033936 0.101825681 1 15, =15
92, 93 0.000031680 0,101889041 5 4, —4
94 0.000030739 0.101919780 6 0
95, 96 0. 000030339 0.101980458 3 9, =9
97, 98 0. 000029757 0,102039972 2 12, —12
99, 100 0.000029734 0.102099440 6 2, =2
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Making use of the orthonormality condition expressed in

Eq. (9), Eq. (39) can be reduced to the form

A*= (G D)1 D0 BT A= ST (40)

where S, is defined in terms of B, as
S,=[(GmD*)™ BX £,1"2. (41)

Since B, is a Gaussian random variable, so is S,.
Moreover, since 8, has a zero mean value, so does S,.
Its variance is

o7 =(5D. (42)

Substituting £q. (41) into Eq. (42), and making use of
Eq. (12), we obtain

02 = (k7 D¥) (8% B = (k7 DA™ BE(D). s
Now if we make use of Eq. (23), we can cast Eq. (43)
in the form

o2 = (4/m)(D/7o)* *BE. (44)

At this point, we see that the aperture averaged,
squared wave-front distortion A* as given in Eq. (40),
is equal to the sum of the square of a set of Gaussian
random variables S,, each with mean value zero, and
with a variance o given by Eq. (44). The value of ¢
is given in terms of the eigenvalues we have just solved
for and which are listed in Table I. The dependence of
the aperture-averaged wave-front distortion squared on
aperture diameter D and on the wave=-front distortion
coherence length 7, is contained in the (D/7)*’® depen-
dence shown in Eq. (44).

Qur problem now is to figure out the probability that
the random variables S,, squared and summed, as in
the right-hand side of Eq. (40), will have a value less
than some amount. We define a good image as one that
is formed when the wave-front distortion over the aper-
ture is less than 1 rad rms, i.e., when A% is less than
1 rad.? The probability of obtaining such a good short-
exposure image

Prob(good short-exposure image)
= Prob (E Si=1 radz) (45)
n
can be written in terms of the Gaussian distributions for
each of the variables

Prob (good short-exposure image)

= f ds, (2m a?)™V?
=1 “1limits

Xexp(-3S2/0f). (46)

where the limits correspond to a hypersphere in the
multidimensional S, space, the sphere being of unit ra-
dius.

This calculation, though it bears some resemblance to
the ordinary chi-squared integral, because of the depen-
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TABLE II. Probability of obtaining a good short-exposure
image.
D/ry Probability
2 0.986 +0.006
3 0.765+0.005
1 0.334 £0.014
5 (9.38+0.33)x107*
6 (1.915+ 0., 084) x107*
7 (2.87+0,57)x107
10 (1.07+0.48) x107°
15 (3.40£0,59) x 1078

dence of ¢? on n, can not be performed in closed form.
We have therefore made use of Monte Carlo techniques
for evaluation of this probability. The results obtained
are shown in Table II.

In Fig. 1, we have plotted this probability in a form
which makes manifest a negative exponential dependence
on (D/¥g)?. As can be seen, the results are very strong-
ly suggestive of this type of dependence, and we have
fitted the equation

Prob~ 5.6 exp[~—0.1557 (D/7y)?]

(if D/ry=3.5) (47)

to the data. It is quite obvious that the probability is a
strong function of D/7;, and that if we intend to have a
reasonable probability of obtaining a good short-expo-
sure image, we must be careful not to push the aperture
diameter beyond some reasonable multiple of 7. Ex-

o
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FIG. 1. Probability of obtaining a good short-exposure image.
The probability is plotted on a logarithmic scale against the
aperture diameter divided by 7, ratio squared. A straight line
on this graph shows an exponential dependence of the probability
on the aperture area. The data plotted corresponds to the
values in Table II, with the spread due to the fact that Monte
Carlo integral evaluation was used. The straight-line fit to

the data matches Eq. (47).
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actly how large this multiple can be depends on how
many short-exposure images we are willing to take or
how long we are willing to wait before we get a good
image.

VI. DISCUSSION OF RESULTS

The results presented in Table II and Fig. 1 are fairly
self-explanatory. They are certainly in good agreement
with Hufnagel’s* conjecture that the probability ought to
be a negative exponential function of aperture area. The
quantitative results tell us that if we want a probability
of the order of 1x107° of obtaining a good short-exposure
image, the aperture diameter should not be significantly
larger than 7r, or 8ry. If we are willing to accept a
probability of 1X107, only a minor increase in diameter
up to 10y, is allowed. Working with diameters anylarger
than this leads to what are almost certainly unacceptable
probabilities.

It is particularly interesting to note the operationally
high probabilities that apply for diameters of about 77,
or a bit less. This suggests that for many imagery pur-
poses significantly better than ordinary turbulence-lim-
ited resolution can be achieved if we carefully choose
our aperture diameter and take several hundred short-
exposures and select from these the best. This, of
course, calls for not merely an adjustable aperture on
our imaging system, but some method of measuring 7,
so that we know what aperture diameter to use.

It is appropriate to note that the probability we have
calculated applies independently to separate isoplanatic
patches on the image. This means that in any one image,
rather than its being entirely good or entirely poor res-
olution, there will be distributed over the image field-
of-view a set of rather small regions, isoplanatic patches,
in which the resolution is good. The rest of the image
area will have much poorer resolution. To image alarge
object and determine all of the fine details of that object,
it would be necessary to piece together the image from a
set of short-exposures, selecting the high-resolution
regions in each of the images, to put together one high-
resolution image.

The assumption that we are dealing with a short-ex-
posure image is basically equivalent to the assumption
that the random wave-front tilt does not change signifi-
cantly during the exposure. So long as the wave-front
tilt is constant, it does not affect the sharpness of the
image —but if the exposure period is long enough to al-
low any significant wave-front tilt change, this can
smear the image and degrade the resolution. We have
recently carried out calculations of the rate of wave-
front tilt change based on the work of Greenwood and
Fried,® and from this have been able to estimate the al-
lowable exposure time for short-exposure imagery of
the type we have been considering here. We find that if
along the propagation path there is a uniform wind speed
V perpendicular to the path, then the change in wave-
front tilt will be less than £ A/D if the exposure time is
less than 7=37y/V. We believe this is a proper criteri-
on for selecting the short-exposure period in seeking an
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accidental occurrence of near diffraction-limited imagery
through turbulence.

As a word of caution in interpreting and applying our
results, it is appropriate to recollect here that we have
assumed that the statistics of turbulence and the value
of ¥y remain constant over the period of the “experi-
ment.” What we have calculated is the probability that
a sample drawn from the ensemble of wave-front dis-
tortions will be a sample with almost no distortion. Qur
ensemble is restricted to samples from the same value
of g, i.e., there is no change in the strength of turbu-
lence over the propagation path during the experiment.
There is, however, a larger ensemble associated with
different values of y. #, changes with changing turbu-
lence conditions, and this larger ensemble includes
cases for which 7, may sometimes, though infrequently,
be significantly larger than the typical value. Average
probabilities over this grand ensemble might be expected
to yield significantly higher probabilities of a good short-
exposure image for large aperture diameters, However,
obtaining an average over this grand ensemble corre-
sponds in the physical world to waiting over periods of
hours, perhaps days, for the variety of turbulence con-
ditions that can exist over the propagation path. This
may not be practical. The ensemble average for which
we have evaluated the probability of obtaining a good

short-exposure image in this paper corresponds to tak-
ing a set of images in rapid succession over a short pe-
riod of time during which we do not expect or require
the nature of the turbulence in the propagation path to
change. We believe this case corresponds to a variety
of nominal practical limitations. Our results show that
in this type of situation, a judicious choice of aperture
diameter and careful selection of the images to be uti-
lized can yield results which have significantly better
image resolution than the typical atmospheric turbu-
lence limit.

*Originally presented at the NATO AGARD Electromagnetic
Panel meeting on “Optical Propagation in the Atmosphere,
held in Lyngby, Denmark, October 1975, with the title, “How
Many Pictures Do You Have To Take To Get A Good One?”
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