

Grupo de Ciencias Planetarias

The onset and expansion of the 2018 Martian Global Dust Storm from ground-based and VMC/MEx imaging

Agustín Sanchez-Lavega¹, J. Hernández-Bernal¹, T. del Río-Gaztelurrutia¹; R. Hueso¹; A. Cardesín-Moinelo², D. Titov³, S. Wood⁴ and M. Delcroix⁵

(1) Universidad del País Vasco UPV/EHU (Spain); (2) European Space Agency-ESAC, Madrid (Spain); (3) European Space Agency-ESOC (Germany); (5) Société Astronomique de France (France)

EPSC-DPS – Genève (Suisse) – 9 September 2019

2018 Martian Global Dust Storm (GDS 2018)

Observations (May – July 2018)

(1) Ground-based images in public repositories: PVOL (Planetary Virtual Observatory Laboratory) at UPV/EHU ALPO-Japan (Association of Lunar Planetary Observers) Contributions from 40 observers Mars Section of ALPO-Japan

(2) Visual Monitoring Camera (VMC) onboard MarsExpress

References for this work:

(1) A. Sánchez-Lavega, et al., The onset and growth of the 2018 Martian Global Dust Storm, *Geophys. Res. Lett.*, **46**, 6101-6108 (2019). (2) J. Hernández-Bernal, et al., The 2018 Martian Global Dust Storm over the South Polar Region

studied with MEx/VMC, *Geophys. Res. Lett.* (in the press).

Onset of the GDS 2018

Precursor storm: 27 May – Vastitas Borealis (Longitude = 347°W – Latitude = 56°N) Onset: 30-31 May - Acidalia Planitia (Longitude = 18°W – Latitude = 31.7°N) **Orbital Longitude: Ls = 184°**

Early expansion of GDS 2018: 31 May – 4 June

Meridional:

North \rightarrow South expansion along the Acidalia "corridor"

Zonal: Eastward expansion Westward expansion

Observers: 31 May, J. Rueck 1 June, E. Morales 2 June, J. Rueck 3 June, P. Maxon 4 June, K. Beverage 4 June, D. Millika & Nicholas

Expansion of GDS 2018: 5 -8 June

Dust expansion velocities

Meridional drift and velocity (North-South) Specific longitudes

Zonal drift and velocity (East-West) Specific latitudes

Global Expansion: 9 – 27 June

E. Morales movie 31 May – 4 July

GDS reached Curiosity (X) by 8-9 June GDS penetrated the South Pole (SP) by 9-11 June

9 June, A. Wesley 15 June, D. Peach **X Curiosity** 16 June, D. Peach **X Curiosity** 17 June, D. Peach 18 June, D. Peach

19 June, C. Foster 23 June, A. Wesley 23 June, C. Go 27 June, D. Peach

GDS 2018 penetrating and expanding in the South Pole: VMC/MEx observations

- VMC monitoring starting on June 18 due to technical pause
- ~ 1,000 images until August
- MEx apocenter near the South Pole
- Nadir and limb imaging

- FOV ~ 30° x 40°
- Navigation software (J. Hernández-Bernal)
- Science instrument 2017
 - (Sánchez-Lavega et al., Icarus 2018)
- Ongoing Radiometric Calibration
- * EPSC-DPS2019-924 (E. M. Ravanis et al.) * EPSC-DPS2019-1400 (J. Hernández-Bernal et al.)

Pericenter $\sim 300 \text{ km}$ Apocenter $\sim 10,000 \text{ km}$ Period $\sim 7.5 \text{ hr}$

VMC full disk images during GDS 2018

GDS over the Southern Polar Region

Polar projections: Morning water ice hazes and uneven distribution of dust

Spiral & arc-shaped bands crossing the terminator

12h

* Altitude ~10-30 km over the surface at Mars terminator

Dust motions in the South Pole

- Dust motions tend to be toward terminator (a, b)
- Sometimes it seems to trace a polar circulation (b)
- V (max) ~ 90 m/s

Imaging the limb: projected dust (VMC/MEx)

GDS 2018 in context

Confirmed Martian Global Dust Storms or Planet Encircling Storms (*)

Year	Martian	Ls		Duration	Initiation	
	Year (MY)				loc	ation
1956.63	1		249°	Aug 19-Nov	31°E,	30°S
1971.72	9		260°	Sep 22-Jan	38°E,	29°S
1973.81	10		300°	Oct 13-Dec	272°E,	24°S
1977.12	12		204°	Feb 15-April	265°E,	40°S
1977.23	12		268°	May 27-Oct	280°E,	48°S
2001.48	25		185°	June 26-Oct	75°E,	55°S
2007.47	28		262°	June 22-Oct	0°E,	45°S
2018.41	34		84.9°	May 30-Aug	348° [,	35°N

(*) Following Khare et al. (2018) adding Sánchez-Lavega et al. (2019)

0.075 0.150 0.225 0.300 0.375 0.450 0.525 0.600 0.675 0.750 0.825 0.900 0.975 IR absorption CDOD normalized at 610 Pa

Montabone et al. (2019)

GDS 2018 in context: Onset location and expansion

Expanding area GDS 2018 from 30 May to 8 June Precursor storm on 27 May (purple area) Expanding dust direction (arrows) Confirmed previous GDS (yellow disks, year indicated)

GDS 2018 in context: total dust area growth

GDS 2018 in context: The first Northern onset

Mean daily insolation (Wm⁻²) at the top of the atmosphere along a Martian year

Aerocentric Longitude (Ls)

Summary GDS 2018

- ➢ First northern GDS (+35⁰N) with precursor at +55⁰N
- Onset early in the dust season: Ls = 185°
- Expansion velocities: $U_{zonal}(max) \sim 15 \text{ m/s}$, $V_{meridional}(max) \sim 40 \text{ m/s}$
- Area expansion rate similar to GDS 2001 but lower than GDS 2007
- > Dust top altitudes ~ 60 70 km
- Penetration in the South Polar Region, motions toward terminator: V(max) ~ 90 m/s
- > Spiral & arc shaped aerosol bands penetrating the nightside: $L \sim 2000-3000$ (evening to morning side) and H = 10 - 30 km
- Suspected minimum insolation for GDS occurrence ~ 125-150 (Wm⁻²)