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Fermi acceleration is one of the most efficient acceleration process for
particles in the Universe. It was first proposed by Enrico Fermi in 1949.
This process occurs in many different astrophysical situations like - e.g. -
solar corona, interstellar clouds, supernovae, Wolf-Rayet stars, pulsar winds,
Gamma-Ray Bursts, microquasars or Active Galactic Nuclei... In this short
introduction, I intend to explain some physical basis of such a process in a
general context.

1 The non-relativistic case

In this first section, we consider ”non-relativistic” Fermi acceleration of
particules. In the medium (or plasma), we neglect binary interactions and
particles only collide or interact with some scattering centers of any origin.
In astrophysical contexts, their nature is often magnetic (MHD disturbances,
magnetic clouds...). These scattering centers are supposed to have an infinite
mass and a non-relativistic velocity ~u, in the observer frame: the ”non-
relativistic” character of the considered process refers to this velocity. For
simplicity, we assume that all interactions can be considered as elastic i.e the
shock or the interaction, between the particle and the scattering center, does
not absorb a significant energy. Initial particle velocity, namely ~vi, is such
that vi ¿ c, in the observer frame. This assumption is not essential but it
simplifies the explanation below, allowing galilean velocity transformation.
Following these assumptions, in a scattering center frame, the kinetic energy
of a particle is conserved during the interaction. But, in the observer frame,
the situation is quite different. For a particle, one can write

∆εc = εcf − εci =
1

2
m

(
v2

f − v2
i

)
, (1)
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where vf is the particle velocity, in the observer frame, after the interaction.
In the scattering center frame, velocities before and after the interaction are

~vci = ~vi − ~u , (2)

~vcf = ~vf − ~u , (3)

and, because particle does not gain energy in reflection, we have, in first
approximation: ~vcf = −~vci. Thus, the energy conservation, in this frame,
leads to

∆εc = m (~vf − ~vi) · ~u = 2m
(
u2 − ~vi · ~u

)
. (4)

For a head-on interaction, −~vi · ~u > 0, and the energy gain, εci/εcf , is always
> 1. For a rear-on or overtaking interaction, the energy gain can be < 1 if
|~vi · ~u| > u2.
The efficiency of such a process, like the characteristic acceleration time,
highly depends on the considered astrophysical situation, and its determi-
nation has to take account of several limitations (synchrotron losses, binary
interactions, . . . ). By neglecting these limitations, we can distinguish two
important cases:
For an equivalent high number of head-on and rear-on interactions, the gain
coming from the term ~vi · ~u will be close to 1. But the term 2mu2 will be
always > 0, and particle energy could increase at every interaction. This is
the stochastic second order (in u2) Fermi process.
However, when the scattering centers have an isotropic velocity distribution,
the number of head-on collisions is higher than rear-on collisions, and thus,
the energy gain, coming from the scalar product ~vi · ~u, is > 1. This is the
first order Fermi process.
At last, following the physical context, characteristic acceleration times of
these two Fermi processes could be quite different or not, and we cannot
easily decide which one is the most efficient for particle acceleration.
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2 Relativistic Fermi acceleration

We consider now a physical situation in which the scattering centers have
a relativistic velocity. So we cannot use galilean transformations from a frame
to another, but rather Lorentz transformations. In this way, we show here
that the previous results are deeply modified.
Let be the 4-momentum, (ε1, ~p1), of a particle in the observer frame. This

particle interact with a scattering center, the velocity of which is ~β? (= ~v?/c)

for the observer. Let be the pitch angle cosine, namely µ1 = cos(~p1, ~β?), of
this interaction. We can define ~p1 = ~p1‖ + ~p1⊥, where ‖ and ⊥ are relative to

the ~β? direction, p1 = |~p1| and p1‖ = p1 µ1. Lorentz transformation from the
observer frame to the scattering center frame only modifies the momentum
component ~p1‖. The 4-momentum (ε′1, ~p

′
1), in the scattering center frame, is

such that

ε′1 = γ?

(
ε1 − β? p1‖

)
,

p′1‖ = γ?

(
p1‖ − β? ε1

)
, (5)

with β? = |~β?| and γ? = (1− β2
?)
−1/2

.
Considering only relativistic particles, we have ε1 ' p1 c, and the previous
equations yields

p′1 ' γ? (1− β? µ1) p1 ,

µ′1 ' µ1 − β?

1− β? µ1

. (6)

During the interaction, the particle energy is conserved in the scattering
center frame: p′1 = p′2, the momentum after the interaction, and µ′1 is trans-
formed in µ′2. A new Lorentz transformation gives the new 4-momentum,
(ε2, ~p2), of the particle with:

p2 ' γ2
? (1 + β? µ′2) (1− β? µ1) p1,

µ2 ' µ′2 + β?

1 + β? µ′2
. (7)

When the pitch angle is > 1/γ?, the energy gain could be as high as γ2
? in

only one interaction: this implies that one cannot use non-relativistic Fokker-
Planck description for the evolution of the phase-space particle distribution,
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because of the hypothesis of small energy jump at every interaction. In our
case, the energy jump can be easily written:

∆ε = ε2 − ε1 ' β?
µ2 − µ1

1− β? µ2

ε1 . (8)

When one consider interaction between particle and magnetic disturbance,
µ′1 is randomly transformed in µ′2: thus, following Eq. (7), a flat distribution
of the pitch angle cosine µ′2 leads to an highly anisotropic distribution of µ2

for β? very close to 1, which is an important consequence of the relativistic
Fermi acceleration.
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