Waves in plasma

Denis Gialis*

This is a short introduction on waves in a non-relativistic plasma. We
will consider a plasma of electrons and protons which is fully ionized, non-
relativistic and homogeneous.

1 Preliminaries

1.1 Maxwell’s equations

The electromagnetic field (E , B ), in such a plasma, is governed by Maxwell’s
equations:
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E = -2
V x T (3)
L - 1 0E
VxB = /L()J—FEE? (4)

where n, and n. are respectively the local proton density and the local elec-
tron density. In our case, we can add the definition of the total current
density vector

T=Jot Jy=e(m, Vo —nc Vo), (5)

where \7,, and V, are respectively the local proton fluid velocity and the local
electron fluid velocity (see Sec. 1.2).
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1.2 Fluid reduction

For a distribution function f(7,7,t) (= f(&,t)), the Fokker-Planck equa-
tion is such that

(6)

For a process on a time At much shorter than the characteristic colliding
time, we can neglect the diffusion terms, and we obtain

of 0 (< Ar > 0 (< AU >
a——al Atf)—%( m/f> 0
The plasma dynamics is dominated by the electromagnetic field and we have
< AT > S
At = v ) (8)
< AU > q (=, R
= = (E(r,t) X B(r,t)) . (9)

We then deduce the Vlasov’s equation (8% x 7 =0)

Of | Of 4 (man o m B
E—I—va—F+E<E(r,t)+va(r,t))——0, (10)

and the hydrodynamics quantities (do' = dvydvedus):

n(Ft) = /f(ﬁﬁ,t)dﬁ, (11)

(12)

n (7, t) ’

(T—=V)® (G- V) f(F,7,t)d7, (13)

vl
=1
Il
—
3

respectively the density, the Euler’s velocity (or fluid velocity) and the kinetic
pressure tensor.
The integration of the Vlasov’s equation yields the continuity equation

on - -
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because the velocity distribution at the infinity equals to 0,

/(E+ ><B> /81} E+v><B> f} dr=0. (15)

The Euler’s equation is obtained by the first order moment of the Vlasov’s

equation,
Of  OF d (. . 2\ O .
/ (82& 75t (B+oxB) a?)d”— ’ (16)

and, because TR 7= (T —-V)® @ -V)=VaV+iaV+

X
/v( g‘i) dv-/(ff@ )gf -V %—I—n‘_/'@‘_/‘) (17)

Also, we have, by integration parts,

/ gﬁ[(EﬂxB) f}dﬁ:—n (E+V><§). (18)
Then, the Euler’s equation is
W (09) 7 =L 1 (517 5). (19)

With an isotropic and adiabatic assumption: P=Pland Pn™ = constant,
where v = ¢,/¢, is the adiabatic index.

In general anisotropic case, by writing P=P 1+ (P — PL) B;, and in
adiabatic transformations (of duration At > 1/w..), we obtain
Py
—— = constant , 20
5 (20)
p B’
—5 = constant . (21)

In Eq. (19), for a two fluid model (p-e~ plasma), we could have to add a term
of momentum exchange which results from taking account a collision term
in the Fokker-Planck equation (6): it can be approximated by v Av, where v
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is the colliding frequency or the momentum exchange rate per collision®. It
yields two coupled Euler’s equations:

oV, o =\ Vh e (a5 = Ay,
o+ (3 9) o (Bl B) s ()
v,
a9t

(8) BT (B0 ) -0

NpMyp My

where Ve, o~ ny 0ep |Ve — vp| and vpe 2 ne ope |0, — Ve

2 Magneto-Hydro-Dynamics

2.1 MHD model assumptions

We want to construct a single fluid theory:
(1) We consider phenomena that occur on a scale time 7 such that 7 we, > 1,
where the Larmor’s pulsation w., = e B/m,, or on a lenght scale £, such that
lowpp > ¢, where the plasma pulsation w,, = \/n,e?/e;m,. We will define
the Alfvén velocity as Vi = (wep/wpp) € K c.
(2) We assume the local thermodynamics equilibrium? (7, ~ T,), and a
quasi-neutral p-e~ plasma: |n, — n.| < n, + ne.
(3) P =PI and Pn~" = constant (isotropic and adiabatic assumption).
(4) We define the following quantities:

p= NpMy+ NeMe X NpmMmy, (24)

Vo= npmpr%—nemeVeﬁ‘—/»p’ (25)
Ny My + N Me

P = P+P, (26)

J = e(np‘%—ne‘z). (27)

With these assumptions, the Eq. (22) and (23) lead to

)V - B o -
Pl 5 + <V . V) V| = =VP+(n,—n.) € E4+JXB+(Vep e Me—Vpe iy my) (Ve—V,,)

Tt depends from the interaction modelling between the two particle species.
2We have the approximation < 2 > / < 172 >~ my,/me, but |V, — V,| ~0.

4
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or, taking into account the quasi-neutrality assumption and equality in mo-
mentum exchange (1, Melep = Ny My Vpe OF Vep = (Myp/Me) Ve ),

—

a7,
ot

—

(17-6 V|=-VP+JxB. (28)

N———

p

Also, because V, =V, — J/en. ~ V — J/en,, we deduce from Eq. (22) that

v - JxB
MV y ZXZ g, (29)

N, €2 Ne €

by neglecting av, /dt and VP, in the fluid model, and with v = v,,.
With n = 2=€ (Spitzer conductivity), we = € B/m. and b = B/B, the

T MevV

generalized Ohm law is written

T e (fxl?):n(EH?xB). (30)

14

The current density vector, with EII = (E-b)band E|, =bx (E xb), can be
easily expressed

=Byt (Bt Vx B)anbx (B 7 xB), @)
where n; =n/(1+ w?/v?) and Ny = n/(v/w, + w/V).

There are two asymptotic limits:

(1) When wee < v, the Ohm’s law becomes isotropic and J = 7 (E +V x E)
This is the “resistive” MHD regime.

(2) When the plasma is collisionless, i.e v — 0 (or n — +00), with a finite ra-
t10 wee /v, We ha\ie thg appzoximation of the “ide;al MAHD” or Ehe ng)n—resistive
MHD regime: E +V x B = 0. But, when |J x B|/en.|V x B] < 1, we
have also J = 7 <E +V x E) this is the case when {yw,, > ¢ (first MHD

assumption) and Vy ~ {y/19 # 0. Otherwise it is necessary to have w. < v.

When the electromagnetic field is slightly variable (over scales ¢y and 7),
|V X E| ~ Eo/g() ~ BQ/T(), |3E/8t| ~ E()/Tg and |V X B| ~ Bo/fo7 where E()
and By are the characteristic values of E and B. Thus we have
(1/2)OE /0| (Lo/70)?
IV x B c?

<1, (32)
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in the non-relativistic MHD regime, and the Eq. (4) becomes V x B = g J.
Assuming an isotropic Ohm’s law, we deduce from Eq. (3) and (4),
0B

E—§X(‘7XB’):VWLA§, (33)

where v,,, = 1/pon is the magnetic diffusivity. We can form the ratio between
the advective and the diffusive terms

|6X(‘7X§)’ ‘/()Bo/go _‘/()é()

v AB| Vm Bo/ (3 Vm

where V) (< ¢) is the characteristic velocity (~ V4) of the MHD fluid. This
ratio is defined as the magnetic Reynold number R,,. When R,, < 1, the
plasma dynamics is dominated by its resistivity and its diffusion. When

R > 1, this is the ideal MHD regime: the diffusion can be neglected and,
the magnetic field and the MHD fluid are “frozen” together.

: (34)

2.2 Ildeal MHD and waves

According to the previous section, the ideal MHD equations are:

% S v <p17>, (35)

%—f = Vx(VxB), (36)

%(Pw) _— (37)

| D (v 9) 7| - _w:ﬁ:oéxg. (38)

In the Eq. (38), the term (V x B) x B can be written (B-V) B — (1/2) VB2,
Thus, we have

- - —

= VP —VP,+Thn, (39)

o| W (79) 7

where the magnetic pressure P,, = B%/210, and the magnetic tension, fm, is
such that

T, =

G905 _a (B, 2 F "

Ko T ds Q_MO to Re’

6
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where s is the curvilinear abscissa, b 1 is the unit vector perpendicular to
b= B/B, and R, the curvature radius of the magnetic field line. Thus, the
Laplace’s force (per unit of volum) can be written

2P,

b, . 41
R (41)

ﬁ:jXEZ—ﬁLPm+

If P/P,, < 1, the plasma undergoes the magnetic dynamics, and if P/P,, > 1,
the magnetic field undergoes the plasma dynamics.
At last, the Eq. (37) can be transformed

or _ —0VP -y PV7. (42)
ot

Let us study the effects of a weak perturbation. The linearization process is
the following one: considering a Fourier decomposition, all complex quanti-
ties X will be such that X = Xy+2 where X is a real time invariant quantity
and |2/Xo| < 1. The perturbative quantity z will be o expli (wt — k - 7)]
(where % = —1). The only condition on the pulsation w is that w < Wep.
Thus, we will have 9/0t = iw, V- = —ik, Vx = —ikx and V2 = —k2,
when one derive these perturbative quantities (only).

Assuming that Vj = 0 and writing p = po + dp, the Egs. (35) to (38) yield

5p = Pk.g, (43)
w
— 1—» —
b= ——Fx(@x By, (44)
iwp = —OVPy+iyPyk- 7, (45)
— é -g 1 — — — — — —
iwp® = =V |p+ = [+ — [(By-V)F+ (5 V) Bo| . (46)
Ho Ho

In fact, the Eq. (46) is obtained because, following the Eq. (39), we have

—

- - [ B2 By-V)B
VP, =-V <_0) +(OM¢' (47)
0
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2.3 Example: MHD waves in homogeneous medium

We consider here a simple case: the medium is homogeneous i.e the spatial
variation of quantities X, are negligible. The Eqs. (45) and (46) yield

wp = yP k-7, (48)

. - 1 =
wpe = pk‘+%Bo><<k><b>. (49)

With the Eq. (44), we obtain

W o= Py (E-U)E—iéox[Ex(ﬁx(ﬁxg()))}. (50)

Let us define the basis vectors € = By/|Bo|, @ = ki /|ky| when |ki| # 0
(otherwise €| is an arbitrary perpendicular unit vector), and € = € x €1,

with E:kﬂé’”—i—k@el and ¥ = v € + v € + vy €. We will have

(I ) 1
—— By x [Ex (Fx (7% By) )| = — B3 (i 2@ +vakid) . (1)
Ho Ho

Thus, the Eq. (50) leads to the system

(u)2 - 082 kﬁ) U” - 052 kZH k‘L v, = 0, (52)
(w2—C§ki—ij2) /UJ__CSQk” kJ_U” = O, (53)
(w* = V3 kﬁ) vy = 0, (54)

with the sound velocity Cs = +/v Py/po and the Alfvén velocity V4 =
B2/ (popo) for (B2/uo)/poc® < 1. In its matricial form, this system be-

comes

P hyky (P — C2R3 — VER?) 0 v | =0.(55)
0 0 (W? = Vi) Uy

The solutions of this system (proper modes) are determined by det = 0. The
Alfvén waves are then defined by the following dispersion relation,

w? =Viki, (56)
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and the fast (4) and slow (—) magnetosonic waves are determined by the
dispersion relation,

2

k: 2
Wi, = % (C2+V3) + \/ (C2 +V2)? —4C2V? (ﬂ NGIY

3 Electromagnetic waves in fluid model

3.1 Assumptions

In the Sec. 3, we will consider the following assumptions:

General assumption of adiabaticity:

(1) The phase velocity of waves, v, = w/k, is supposed to be > wvy,, the
thermal velocity of charged particle species.

(2) The energy density of the EM waves is < the thermal energy density.
(3) The damping of EM waves is neglected.

(4) The collision effects are neglected: v — 0.

Additional assumption: the plasma is homogeneous.

We will define:

The plasma pulsation of the species a: wp, = \/Na ¢2/€0 Mo, Where ng, ¢,
and m,, are respectively the density, the charge and the mass of a.

The cyclotronic or Larmor pulsation of the species a: weo = |qa| Bo/Ma,
where By is the intensity of the magnetic field.

3.2 Electromagnetic mode

The plasma is assumed to be isotropic and unmagnetized (B, = 0).
We first neglect the ionic response (J,) and the temperature (7, = 7, ~ 0
With the previous assumptions, the Eq. (22) leads to

Ve (V.9) Vo m—= (B4 Vi x B). (58)



Waves in plasma - Denis Gialis (© 2001 - 2009

The fields E and B are considered as perturbations. Following the lineariza-
tion process, as explained in Sec. 2.2, the Eq. (58) simply becomes

8176 e =
=——F
at me ) (59>

and, because J, = n.eV,, we obtain

w,

Jo=—i2eFE. (60)
w

Thus, the Egs. (3) and (4) could be written

kxE=wB, (61)
kxB=il.—wekE, (62)
and we deduce
(k:-E)k:—k?E:pe—zE. (63)
c

For the electromagnetic mode (lg ‘E = 0), this equation yields the following
dispersion relation:

w? =wl + k. (64)
For w > wye, the phase velocity w/k is superluminal and the EM wave well

verifies the assumption of adiabaticity. For w < w,., the EM wave is evanes-
cent.

For k x E = 0, we obtain the plasmon mode w = Wpe, but with no energy
transport. It corresponds to Langmuir’s oscillations.

3.3 Bohm-Gross and ionic acoustic modes

The plasma is assumed to be isotropic and unmagnetized (B, = 0).
We neglect the ionic response (.J, =~ 0) and the ionic temperature (T, ~0).
With these assumptions, the Eq. (22) leads to

_)e 7 = > _'Pe — > =
8V+(Ve-v)ve:—v —i<E+e><B), (65)
ot Uz Uz Me

10



Waves in plasma - Denis Gialis (© 2001 - 2009

and we suppose the isentropic state equation (37). According to the lin-
earization process and the continuity equation (giving the Eq. (42)), we
obtain first

p=2PRK-V., (66)

with P, = n. kg T., where kg is the Boltzmann constant. Thus, the Eq. (65)
can be written

- w? - knT. /- 5\ =
Jo= =ittt e 4 1B <kJ> K. (67)
w m

For k x E = 0, we obtain the Bohm-Gross mode: indeed, because of the
previous equation, k x J, = 0, and we have

—

2
Je = T kTR (68)
The dispersion relation of the Bohm-Gross mode is thus
kgT.
W= 4 B2 (69)
me

For w < wy,, there is no pure electronic mode. We have to take into account
the ionic dynamics. We first assume low frequencies such that

kB Tp < Ld2 kB T’6
k2 Me
This is at the limit of the first adiabatic assumption (see Sec. 3.1). We
neglect the electronic inertia. The Eq. (68) gives

. (70)

mp

T e il mew €g B
o

"k T T

Concerning the ionic current, the Eq. (23) (with 7, ~ 0) and the linearization

process lead to
2

Jp:—igq)E. (72)

For low frequencies w < wy,, one can assume the quasi-neutrality of current:
e+ Jp >~ 0. Indeed, because V x B =0, we have J. + J, +iwey E = 0 and

lweo B|  w? mews,  w? w?
| e+ Jpl  “ip TRB Le N7 Wy Wop

11
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We then deduce the following dispersion relation for the phonon mode;

w=Csk, (74)

with Cs = /v kg Tc/m,.

For higher frequencies such that wy,, > w > k \/kg T./m., we cannot assume
the quasi-neutrality. The Eqgs. (68) and (72) yield

2 w2

“pp P
_pp =1 75
2t (me/my)w? — k2 C? ’ (75)

with wp,/wpe = v/me/m,. By neglecting the term (m./m,)w?, we obtain the
dispersion relation of the ionic acoustic mode;

Csk

In this mode, we cannot have wf,p <« C? k* which leads to w ~ w,,, because

the condition w/k > +/kp T./m, would not be satisfied and we would have

to take into account Landau’s damping.

(76)

W ™~ Wy

3.4 Magnetized electronic and ionic modes

The plasma is assumed to be magnetized. We will define the basis
{é],€L,ex} as described in Sec. 2.3.
3.4.1 Electronic modes

We first neglect the ionic response (fp ~ 0) and the temperature (7, =
T, ~ 0). With these assumptions, the Eq. (22) leads to

6‘7 LS\ o e o - -
“+ (VoV) Vo= (B4 V. x B) 77
ot + ( Me +Vex (77)
and the linearization process yields
— . w2e — . wC@ — 5
Je:—z—peoE—i—z—Jexe”. (78)
w w

12
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Because
— N wzz)e — o
Je . 6|| = —1 € E - BH s (79)
w
w? w w
Joxd = —iaBxd it i (La)a,  (80)
w w w
we deduce
2 2
— 3 w w — . w, — = w = — -
Je:—i% eOE—i—zﬁegExe”——C;eo (E-eH> el - (81)
w? — w2, w w

The Egs. (3) and (4) gives

2
kX <k‘ X E) +5 [Q(W)EJr = e () (E 5||> &) —iex(w) E X ﬂ =0
c w
(82)
with the coefficients,
2
w
_ pe
erw) = 1- R (83)
2
w
Colw) = o (84)

w w?—w
By defining E = EII + E, with E] = B € and E, - €] = 0, we obtain

2
o - o w o - ) - . o
k x (k:xE) —|—§ [EH(M)E”—f-GL(u))EL—ZEX(w)EL X e”] =0, (85

with the last coefficient,

ew)=1-—7%. (86)

(1) For a parallel propagation i.e k= kj €, the Eq. (85) is equivalent to

0 ‘Z—QeL—kﬁ —i Y €, E, | =0, (87)
0 i‘;’—jex ‘Z—jel—kﬁ E, .

13
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in the basis {€],€.,éx}. For E = EH, we recognize the plasmon mode (see

Sec. 3.2) with w = wy,. For E #+ E”, the other proper modes are obtained
for det =0 i.e kﬁ c* = w? (e, + €x). The two dispersion relations correspond
to the following modes:

(1-a) The left mode (L-mode):
2

=2 {1—#} , (88)

w (W + Wee)

with the cut-off frequency (k) = 0) such that

wr, = wge—l—f—?- (89)
(1-b) The right mode (R-mode):
2 2
kﬁ - uc)_2 {1 W (wwiewce)} ’ (90)
with the cut-off frequency (k) = 0) such that
w2 o w
Wr =\ w2, + f—l—f, (91)

and the resonance frequency (k| — +00) for w — wee.
We can plot two different Brillouin diagrams (w-% plane) for the R-mode: for
a strong magnetized plasma, wee > wpye, and for a dense plasma, wee < Wpe.

The different phase velocity between the R-mode and the L-mode is at the
origin of the Faraday effect, for a rectilinear polarized wave, which is the
rotation of the rectilinear polarization plane.

For w < wee, the R-mode is named whistler mode and the dispersion relation

is simply:
w = k2 2 Lee

(92)

5 -
wpe

The group velocity is thus v, = Ow/0k| o< \/w.

14
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(2) For a perpendicular propagation i.e, for example, k=k 1 €1, the Eq.
(85) is equivalent to

Sea—k 0 0 E)
0 el —iYex E, | =0, (93)
0 PG ex Sel—k E..

in the basis {€j, €, ex}. For E| = 0, we obtain the ordinary mode with the

dispersion relation:

w? = er + k3. (94)

This is similar to the electromagnetic mode previously obtained in Sec. 3.2.
For E, # 0, we deduce from det = 0, the extraordinary mode with the
following dispersion relation:

kS ?=w?(eL — €2 /el), (95)
which can be written

(@ — wh) (@ — w})

k2 ? =

7 (96)

2 _ 2

where the frequency of the high hybrid resonance, corresponding to the Lang-
muir electronic oscillation, is such that

1
w?]H = 5 [er + wf)e + \/wge + W;%e - 4(")36 (wgp + ng)J : (97>

~ 2 2
For wpe > wy, and, because wee > Wep, Wup ~ /W2, + Wpe-

(3) For an oblique propagation, k=k & + Ky €), with k; = k sinf and
ki =k cosf. The Eq. (85) is equivalent to

Sa-k 0 ko Ej
L E, | =0, (%)
kJ_k” i‘z—2€X U;—2€J_—]€ﬁ EJ_z

in the basis {€|,€1,é€x}. By defining,

a1(0) = ey sin®6 + ¢ cos® 0, (99)
az(0) = e (1+cos’0) + (7 —€%) sin®6, (100)
az = ¢ (€l —€x), (101)

15
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we obtain the proper modes (det = 0) with the equation

ke’ kc\®
aq (—C> — a2 (—C) + a3z = 0. (102)
w w

Thus, we have the dispersion relation

k:u_J\/aQ:I: a§—4a1a3. (103)

c 2aq

There are resonances (kK — +o0) for a; — 0 and cut-off (k — 0) for a3 — 0.

3.4.2 lonic modes

We also consider a cold plasma by neglecting the temperature (1, = T, >~
0), but we introduce the ionic current (.J, # 0). With these assumptions, the
Egs. (22) and (23), and the linearization process, yield

2 2

- L Whew — . Wee = 5 Wee S -

Je:—lu)zp_—uﬂ |:€0E+27€0EX€”—F€0 (E ||> ||:| s (104)
ce

2 2

- ) ) - W, = .\

Jp:—l% EQE—ZﬁG()Exen——Cé)EO (E@H) I s (105)
w? — w2, w w

and we obtain the same relation than in the previous section,

2
- - = w = = ) o . o
k x (kxE) +§ [eH(w)E”+el(w)El—zeX(w)EL X e” =0, (106)

but with the following new definitions for coefficients

w? w?
= 1- e _ 2d 107
€J_<w) w2 . wg@ w2 _ wgp 9 ( )
2 2
Wee  Wpe Wep  Ypp
= = = =7 108
EX(w) w wg _ wge w W2 . ng Y ( )
w2 w?
€||(<,u) = 11— wp; — ﬁ (109)

For high frequencies (w > w,,), the situation is the same one than in the
Sec. 3.4.1.

16
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For very low frequencies (w — 0), because wee >> wep, we have ) — —w?, /w,
€, = 1+2/V3and, e, — (A2/VE)w/wWep.

(1) For a parallel propagation i.e k= k) €, and for E #+ E“, the Eq. (106)
leads to kjf ¢> = w? (e, £ €x). For low frequencies (w < wy,), and for n, ~n,
(e w)/wep = W [wee), we deduce

= IBV3 {1iwi+o(w)}. (110)
cp

Wep

We thus define again the following modes:
(1-a) The left mode (IL-mode):

Wk Vi J1— =2 (111)
Wep

(1-b) The right mode (R-mode):

Wk Vi J14+ = (112)
Wep

For w — 0, these two modes blend into the Alfvén mode, as previously de-
scribed in Sec. 2.3: w ~ ky Va.

(2) For a perpendicular propagation i.e, for example, k =k €1, and
for E, # 0, we deduce from the Eq. (106) the dispersion relation for the
extraordinary mode:

kS ?=w?(eL — €2 /el), (113)
which leads to
2 (W — wh) (W — wi)
(W? —wig)(Ww? — wiy)
where the frequency of the low hybrid resonance, corresponding to the Lang-
muir oscillation, is such that

k2 =w , (114)

Lo 2
g =5 [+l — ol bed —de2 @3 +e3)] . (115)
For wpe > wy, and, because wee > wep, we have

2
W, T w

2
P~ e Dep (116)

WLH =~ Wee
2 2
Wee + wpe

17
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For w — 0, we recognize again the Alfvén mode because w ~ k; V4 /y/1 4+ V3/c? ~
ko Va (with Vi < c).

(3) If we slightly modify the assumptions by taking into account the
electronic compressibility effects (7. # 0), and if we consider pulsations w
such that w, < w < wee, the modification of the Eq. (104) with the pressure
term, and the Eq. (105) give

- w2 kpT. k2 -

Je” ~ — f €0 E” —+ 775—;2 Jell , (117)
- Wl w .

Jp” = CUZ p_p w2 €o E” ) (118)

cp

with w2 /w? > 1 and, by neglecting terms in w,,/w. Because w/k <

V7 kg T./me, the Eq. (117) can be written

2
-  WpeWMe o

Je” ~1 m €0 EH . (119)

The quasi-neutrality of current, fe” + J;” = 6, leads to dispersion relation of
the ionic cyclotron mode;

w? =w, + C2k?, (120)

with Cy = \/y kp Tc/m,, and because w?, /w?, = me/m,,.
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4 Summary

Let us summarize the previous results concerning waves propagating in
an isotropic p — e~ plasma.

I - For an unmagnetized plasma i.e By =0

[-1 The ionic response (jz;) and the temperature (I, = T, ~ 0) are ne-
glected:

- The electromagnetic mode (k - E = 0):
w? = wze + k2. (121)

For w > wye, the phase velocity w/k is superluminal.
For w < wy,, the EM wave is evanescent (k = k, + i k;, with k; # 0).

- The plasmon mode or Langmuir’s oscillations (k x E = 0):
w = wpe. No energy transport.

[-2 The ionic response (J;) and the ionic temperature (7}, ~ 0) are first
neglected:

5 = 0):
kgT.

W =wl + —— k. (122)
Me

- The Bohm-Gross mode (k x

For w < wy,, there is no pure electronic mode. We have to take into account
the ionic dynamics (J,).

- The phonon mode (w < w,, and J, + J, =~ 0)
w=0C.k, (123)
with Cs = /v kg Te/m,.

- The ionic acoustic mode (k\/kgT./m. < w < wyy):
Csk

19
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IT - For a magnetized plasma i.e By # 0

—

II-1 The electronic modes (J, ~ 0 and T, = T}, ~ 0):

- The L-mode (k || B):
2 w?
M=t - —— | (125)
c? w (W + Wee)
with the cut-off frequency (k| = 0) such that

2
Wee  Wee

=5 (126)

— 2
Wy, = u)p€+

- The R-mode (k || B):
W2

K== {11)(5—5‘;)} : (127)

with the cut-off frequency (k| = 0) such that

e wce
=\ /w2 + (128)

and the resonance frequency (k) — +oo) for w — wee.
For w < we, the R-mode is named whistler mode and the dispersion
relation is simply:

Wee
W = k2 2

o (129)
- _Thei ordinary mode equivalent to the electromagnetic mode (E =0

and kL B):
w? = wf)e + k2 2. (130)

- The extraordinary mode (E, # 0 and kLB):

2 2 2
> o (W —wp) (W —wi)
o= el o) (131)
UH
with the frequency of the high hybrid resonance,
1
w?]H =3 [wce + wpe + \/w2 +wZ — 4w (wgp + wgp) ) (132)
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2 2
For wpe > wyp, wun >~ \/we, + wye.

I1-2 The ionic modes (J, # 0 and T, = T}, ~ 0):

- The L-mode (k || B):

Wk Vi J1— -2 (133)
Wep

- The R-mode (k || B):

wee ky Vo J14+ — (134)
Wep

For w — 0, these two modes blend into the Alfvén mode: w ~ k V.

- The extraordinary mode (E, # 0 and kLB):

2

(w? — wh) (W —wi)

k@ =w’ 135
L [ ()
with the frequency of the low hybrid resonance,
1
whp =5 [+l =l tu—deZ @3 +e3)] . (136)

For wpe > wy, and, because we, > wp, we have

2
W, + W

2
2\ fee Dep- (137)

WLH = Wee
2 2
Wee + wpe

For w — 0 (or w < wy), we obtain the Alfvén mode because w ~ k; Va//1+ V3 /c? ~
ko Vi (with Vi < ).

- The slow (-) and fast (4) magnetosonic modes (w < w):

k2 ki \ 2
wh, = 5 (C24+V3 + \/(Og +V2)2 —4C2V2 <?”) . (138)
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