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Radial Velocity Parameters Introduction

Radial Velocity window for 44 i Boo

The Radial Velocity Plot window displays the observed radial velocity curves for both stars in the binary system, as well as the theoretically 
generated mass-centered and light-centered radial velocity curves.  These various curves will be explained on this page, and the myriad of features 
which allow the user to control the display of the window are described in detail under the Radial Velocity Plot window Help pages.

Radial velocity curves map out the velocity of each star as seen from Earth as measured from spectra which exhibit the periodic Doppler-shifting 
of spectral lines.  As each star orbits the barycenter (center of mass) of the system, one star will be typically going away from the observer while 
the other star will be coming towards the observer.  An approach of a star causes its spectral features to exhibit shorter wavelengths (blue-shift) 
than if it were at rest, and longer wavelengths (red-shift) when the star is receding.  On a plot of these velocities, the convention is that red shifts 
(receding velocities) are plotted as positive quantities because the distance between the observer and the star is increasing (getting larger 
positively).  Blue shifts are seen to be negative velocities because the star is approaching the observer and the distance between them is 
decreasing.  

As stars orbit their common barycenter, they must always be exactly opposite each other, i.e., you can always connect the mass centers of the 
two stars with a straight line which will also pass through the barycenter.  Also, as shown in the diagram below, the distance from the more 
massive star to the barycenter compared to the distance from the less mass star to the barycenter is proportional to their masses, i.e.,

Mass Balance diagram for circular orbits: CM marks the barycenter (center of mass)
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time (the period of the system).  This necessitates that the less massive star, which has the larger orbit, must be traveling at a greater speed than 
the more massive star in order to complete its larger orbit in the same time as the massive star completes its smaller orbit.  For circular orbits, the 
time it takes to complete the orbit (the period) will be

This becomes 

From the mass balance equation we have that

So that finally we see that the ratio of the velocities of the two stars is inversely proportional to the mass ratio of the stars, i.e., 

Therefore if we can measure the velocities of the two stars, then the ratio of their velocities tells us the ratio of the masses, an extremely 
important value to ascertain in the study of binary stars.

Let's return to the radial velocity curves.  If we consider the stars to be point masses, their radial velocity curves will be sinusoids (for circular 
orbits).  The theoretical radial velocity curves generated with the assumption of the stars being point masses are called the mass centers radial 
velocity curves.  The mass centers approximation assumes that the center of the star's mass coincides with the center of the star's light output 
(the light center), i.e., that if you average the light output of the star over its entire surface it would be equal to that of a point source located at 
the mass center.  This is valid if the stars are spherical, but it is not true is the stars are non-spherical.

In the Radial Velocity Plot the mass centers curves for each star are plotted as red crosshairs, as shown below for the detached binary GZ CMa:

Radial Velocity Plot for GZ CMa showing the mass centers theoretical curves (red crosshairs); the blue crosshairs are the primary stars radial 
velocity data points, the green crosshairs those of the secondary star

As can be seen in the above plot for GZ CMa, the mass centers curves fit the observations extremely well.  This is because GZ CMa is a 
detached system with two nearly spherical and nearly identical stars, so the mass centers approximation to reality is very adequate. 

With spherical stars the center of light coincides with the mass center of the stars (e.g., GZ CMa), but with non-spherical stars (overcontact 
binaries in the extreme) the light centers are both closer to the barycenter of the system.  When the light centers radial velocity curves for GZ 
CMa are added to the graph (black crosshairs for the secondary star and black squares for the primary), it can be seen that they are nearly 
identical to the red mass centers curves, as shown below:
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GZ CMa radial velocity curves with light centers points added (black squares for primary star, black crosshairs for secondary)

Although very close to the mass centers curves, the light centers curves are not exactly the same.  They deviate slightly in the quadrature phases 
(0.25P and 0.75P) and especially around the eclipses (phases 0.00P and 0.50P).  Note the strange bump in the primary's light center curve near 
0.00P and a similar strange bump in the secondary's curve around 0.50P.  This bump is known as the Rossiter effect and will be explained below.

The mass centers approximation does not take into account the fact that the stars can be ellipsoidal nor does it take into account eclipse effects 
which show up because the stars are rotating about their respective axes as well as revolving about the barycenter.  Let's first address the non-
spherical issue.  When a star is large relative to its inner Lagrangian surface, it becomes roughly ellipsoidal in shape due to tidal forces between 
the two stars.  What this does to the star's light output is to shift its light center towards the barycenter because of the star's elongated 
shape.  Consider the diagram below which shows the mass centers and light centers for the overcontact binary AB And:

AB And showing the barycenter and the difference between mass and light centers

The light centers will naturally have smaller radial velocities because they are closer to the barycenter, and therefore the amplitudes of the 
observed radial velocity curves will be slightly less than those predicted by the mass centers theoretical radial velocity curves.  This can be seen in 
the comparison of AB And's observed versus light centered and mass centered radial velocity curves plotted below:
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Observed and theoretical radial velocity curves of AB And: blue crosshairs are the primary observed data, blue squares the theoretical light 
centers curves; green crosshairs are the secondary observed data green squares the theoretical light centers curves.  The red crosshairs are the 

primary's theoretical mass centers radial velocity curve, the red squares the secondary's theoretical mass centers curves.

Although a very busy diagram, the above plot demonstrates that the light centers theoretical curves (blue and green squares) fit the data and they 
are smaller in amplitude than the mass centered curves (the red crosshairs and red squares).

Also note the strange divergences near the eclipses (phases 0.00P and 0.50P) first noticed in the plot of GZ CMa's radial velocity data.  What is 
causing this strange perturbation from the mass centered curves?  This is caused by the fact that at the eclipses one of the stars is being hidden 
as its companion crosses in front of it.  It is the way in which the star is being hidden that is causing an increase in apparent radial velocity 
known as the Rossiter effect.  Let's look at what's happening in more detail.

Consider the views of AB And at phases 0.47P and 0.53P shown below:

Remember that the stars are revolving and rotating simultaneously.  If a star is rotating and its disk is entirely visible (like the smaller star in front 
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in the figure above for AB And), one edge (here the "left" edge) is "approaching" us and the other (right side) is receding.  The light coming from 
the approaching side will be blueshifted (wavelength shortened) and the light coming from the receding side will be redshifted (wavelength 
lengthened).  If both sides are visible, these Doppler shifts are essentially equal and merely broaden the spectral features.  But, if one of the stars 
is eclipsed, then the light from the side that is eclipsed will not be seen, leaving an unequal amount of Doppler shifted light coming from the 
unblocked side of the star.  So, returning to AB And at phase 0.47P, the smaller star is blocking the approaching side of the larger star which 
would have emitted blueshifted light because of its rotation.  However the receding limb of the larger star is still mostly visible so its redshifted 
light will still be contributing to the spectral features.  Therefore the lines of the more massive star will be preferentially increased in redshift 
(velocity of recession) as is seen at near phase 0.47P in the above radial velocity plot and the zoomed in version of this plot centered near the 
secondary eclipse.

Close up view of the Rossiter Effect for AB And around secondary eclipse 0.50P

Similarly, after secondary eclipse (phase 0.50P), the approaching limb of the larger star is being revealed while the receding limb is being covered 
up.  This reverses the process so that now the spectral features of the more massive star will be preferentially blueshifted because of the 
approaching limb, and this is exactly why the radial velocity points are more negative.  The same phenomenon occurs with the less massive star 
at the primary eclipse (0.00P).

In the absence of velocity semiamplitudes and a systemic velocity, only dimensionless synthetic radial velocity curves ("normalized" radial velocity 
curves) can be drawn which contain the factor P/(2 π a), where P is the period of the binary and a is the semimajor axis.  A typical synthetic 
radial velocity plot might look like the following:

Normalized radial velocity curve for the overcontact system AE Phe which had no observed radial velocity data as of 2004
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Note that the scale goes from -1 to +1 with the systemic velocity set at zero.  To convert normalized radial velocities into actual velocities you 
would need to know the velocity semiamplitudes K

1
 and K

2
 as well as the systemic velocity V

o
.  The conversion equation is:

radial velocity (km/s) = (normalized radial velocity)(K
1
 + K

2
) + V
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