The PHEMU15 catalog and astrometric results of the Jupiter's Galilean satellite mutual occultation and eclipse observations made in 2014-2015. ${ }^{\star, \star \star}$

E. Saquet ${ }^{1,2}$, N. Emelyanov ${ }^{3,2}$, V. Robert ${ }^{1,2}$, J.-E. Arlot ${ }^{2}$, P. Anbazhagan ${ }^{4}$, J. Bardecker ${ }^{5}$, A.A. Berezhnoy ${ }^{3}$, M. Bretton 6, C. Calderon ${ }^{7}$, F. Campos ${ }^{8}$, L. Capannoli ${ }^{9}$, B. Carry 2, M. Castet 10, Y. Charbonnier ${ }^{11}$, M.M. Chernikov ${ }^{12}$, A. Christou ${ }^{13}$, F. Colas ${ }^{2}$, J.-F. Coliac ${ }^{14}$, G. Dangl ${ }^{15}$, O. Dechambre ${ }^{16}$, M. Delcroix ${ }^{17}$, A. Dias-Oliveira ${ }^{18}$, C. Drillaud ${ }^{16}$, Y. Duchemin 2, R. Dunford ${ }^{19}$, P. Dupouy ${ }^{20}$, C. Ellington ${ }^{21}$, P. Fabre ${ }^{11}$, V.A. Filippov ${ }^{22}$, J. Finnegan ${ }^{13}$, S. Foglia ${ }^{23}$, D. Font 6, B. Gaillard ${ }^{10}$, G. Galli ${ }^{23}$, J. Garlitz ${ }^{23}$, A. Gasmi ${ }^{9}$, D. Gault ${ }^{25}$, K. Gazeas ${ }^{26}$, T. George ${ }^{27}$, S.Y. Gorda ${ }^{28}$, D.L. Gorshanov 29, C. Gualdoni ${ }^{30}$, K. Guhl ${ }^{31}$, K. Halir ${ }^{32}$, W. Hanna ${ }^{33}$, X. Henry ${ }^{11}$, D. Herald ${ }^{34}$, G. Houdin ${ }^{35}$, Y. Ito ${ }^{36}$, I.S. Izmailov 29, J. Jacobsen ${ }^{37}$, A. Jones ${ }^{38}$, S. Kamoun ${ }^{39}$, E. Kardasis ${ }^{40}$, A.M. Karimo ${ }^{22}$, M.Y. Khovritchev ${ }^{29}$, A.M. Kulikova ${ }^{29}$, J. Laborde ${ }^{20}$, V. Lainey ${ }^{2}$, M. Lavayssiere ${ }^{20}$, P. Le Guen ${ }^{11}$, A. Leroy ${ }^{10}$, B. Loader ${ }^{33}$, A.Y. Lyashenko ${ }^{29}$, P.G. Lyssenko 22, N. Maigurova ${ }^{41}$, J. Manek ${ }^{42}$, A. Marchini ${ }^{43}$, T. Midavaine ${ }^{44}$, J. Montier ${ }^{45}$, K.N. Naumov ${ }^{29}$, A. Nedelcu ${ }^{46}$, J. Newman ${ }^{47}$, J.M. Ohlert ${ }^{48}$, A. Oksanen ${ }^{49}$, H. Pavlov ${ }^{50}$, E. Petrescu ${ }^{51}$, A. Pomazan ${ }^{41}$, M. Popescu ${ }^{46}$, A. Pratt ${ }^{52}$, V.N. Raskhozhev ${ }^{12}$, J.-M. Resch ${ }^{11}$, D. Robilliard ${ }^{45}$, E. Roschina ${ }^{29}$, E. Rothenberg ${ }^{53}$, M. Rottenborn ${ }^{54}$, S.A. Rusov ${ }^{29}$, F. Saby 11, L.F. Saya ${ }^{9}$, G. Selvakumar ${ }^{4}$, F. Signoret ${ }^{55}$, V.Y. Slesarenko ${ }^{29}$, E.N. Sokov ${ }^{29}$, J. Soldateschi ${ }^{42}$, A. Sonka ${ }^{45}$, G. Soulie 20, J. Talbot ${ }^{56}$, V.G. Tejfel ${ }^{21}$, W. Thuillot ${ }^{2}$, B. Timerson ${ }^{57}$, R. Toma ${ }^{13}$, S. Torsellini ${ }^{9}$, P. Traverse ${ }^{58}$, M. Unwin ${ }^{59}$, T. Vagelis ${ }^{60}$, F. Van Den Abbeel ${ }^{61}$, H. Vandenbruaene ${ }^{62}$, R. Vasundhara ${ }^{4}$, Y.I. Velikodsky ${ }^{63}$, A. Vienne ${ }^{64}$, J. Vilar ${ }^{65}$, J.-M. Vugnon ${ }^{66}$, N. Wuensche ${ }^{67}$, and P. Zeleny ${ }^{68}$

(Affiliations can be found after the references)
Received XX Xxxxx 2017 / Accepted XX Xxxxx 2017

Abstract

Aims. During the 2014-2015 mutual events season, the IMCCE, Paris France, and the Sternberg Astronomical Institute, Moscou Russia, lead an international observation campaign to record ground-based photometric observations of Galilean moon mutual occultations and eclipses. We focused on processing the complete photometric observations database to compute new accurate astrometric positions. Methods. We used our method to derive astrometric positions from the lightcurves of the events. We developed an accurate photometric model of mutual occultations and eclipses, while correcting for the satellite albedos, Hapke's light scattering law, the phase effect and the limb darkening. Results. We processed 607 lightcurves and we compared the observed positions of the satellites with the theoretical positions from IMCCE NOE-5-2010-GAL satellite ephemerides and INPOP13c planetary ephemeris. The internal precision in equatorial positions is 24 mas , or 75 km at Jupiter. The rms (O-C) in equatorial positions is $\pm 50 \mathrm{mas}$, or 150 km at Jupiter.

Key words. astronomical databases: miscellaneous - techniques: photometric - planets and satellites: individual: Io - planets and satellites: individual: Europa - planets and satellites: individual: Ganymede - planets and satellites: individual: Callisto - occultations - eclipses - ephemerides

1. Introduction

The Jovian system and the Galilean moons have been studied for their motion, in particular. Their respective dynamical models allow us to constrain their structure and their origin theories.

Photometric observations of mutual events of the Galilean moons are essential to improve their ephemerides, mainly because we are able to extract high-precised astrometric positions of the satellites from the photometry. Moreover, Robert et al. (2017) have recently demonstrated that the positioning accuracy derived form photometric observations still remains more pre-

[^0]cise than that derived from direct astrometry, even if the use of the most recent Gaia-DR1 catalog (Gaia Collaboration et al. 2016) allowed them to eliminate the systematic errors due to the star references. Thus, our work is crucial for current and future spacecraft navigation (Dirkx et al. 2016) and for dynamical purposes, since the ephemerides are improved by adjusting the new astrometric positions to the theories.

Photometric observations of mutual events of the Galilean moons are essential to improve the ephemerides. Indeed, we can extract astrometric positions of the satellites from the photometry. The determined positioning accuracy is more precise than that derived from direct astrometry (Robert et al. 2017). Then, we can improve the ephemerides by adjusting the astrometric positions to the theories. This work is crucial for current and futur spacecraft navigation, and for dynamical purposes.

In 2014-2015, the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE) and the Sternberg Astronomical

Table 1. Raw statistics of the PHEMU85, PHEMU91, PHEMU97, PHEMU03, and PHEMU09 campaigns

	1985	1991	1997	2003	2009
Observation sites	28	56	42	42	74
Light curves	166	374	292	377	457
Observable events	248	221	390	360	237
Observed events	64	111	148	118	172

Institute (SAI) organized a worldwide observation campaign to record a maximum of mutual occultations and eclipses of the Galilean moons. In this paper, we present the results of this campaign, with the photometric and astrometric data.

2. The mutual events

Mutual events of the Galilean moons occur when the common plane of their orbits crosses the plane of Jupiter's. This configuration happens every six years when the Jovian declinations of Earth and Sun become zero.

The 2014-2015 period was very favorable since 442 events were observable from 2015-09-01 to 2015-07-20. To compute the predictions of all the 2014-2015 events, we used the IMCCE NOE-5-2010-GAL satellite ephemerides (Lainey et al. 2009) and INPOP13c planetary ephemeris (Fienga et al. 2014) By comparison, only 237 events were observable in 2009 and 360 in 2003. The results of the previous observation campaign can be found in Arlot et al. (2014). In Table 1, we show the raw statistics of the PHEMU85, PHEMU91, PHEMU97, PHEMU03, and PHEMU09 campaigns. We observe a constant increase in the numbers of the observation sites, of the light curves, and of the observed events. This denotes the increase in the interest of the non-professional community in these campaigns.

We have already demonstrated, during the previous campaigns, that photometric records of mutual events are accurate enough for astrometric purpose, and that our method provides a high positioning accuracy (Arlot et al. 2014) More recently, Robert et al. (2017) have demonstrated that the positioning accuracy derived from photometry of mutual events still remains more precise than that derived from direct astrometry.

3. The PHEMU15 campaign

3.1. Report

Following the previous mutual event campaign successes, we organized PHEMU15, an international observation campaign to record as many events as possible. To fill in an eventual lack of data due to poor weather, we encouraged observers in different countries to acquire events, and to observe the same events from various longitudes.

During this campaign, we observed 236 events and a same event was recorded 17 times. We received 641 lightcurves and astrometric results were calculated for 607 of them. 34 lightcurves could not be used for several reasons such as a non event detection, an observation after the minimum, or an observation of an occultation and an eclipse at the same time. Figure 1 shows the raw statistics of the observed events and numbers of corresponding observations.

We distinguished the source of data within two categories. The Source I gathered the photometric observations made by the IMCCE observation team. Records were realized at Pic du

Fig. 1. Raw statistics of the number of events observed N times.

Midi Observatory (IAU code 586) and Haute-Provence Observatory (IAU code 511). We extracted the satellite flow for 38 events to produce the lightcurves before treatment. Then, the Source A gathered other observations made by professional or non-professional observers around the world. The satellite flow were directly extracted by the observers who transmitted their lightcurves to the IMCCE for treatment.

3.2. Observation sites

74 observation sites were involved in the 2014-2015 campaign. For several sites, more than one telescope were used to record events. We have introduced a special code to identify each observation facility. A correspondence between the facility and their conventional code is given in the databas ${ }^{11}$ with the astrometric results in electronic form at the Natural Satellites DataBase (NSDB) service of IMCCE. Table 2 shows raw statistics of the different observation sites of the campaign. Starting from the lefthand column, we provide the number of observations received O, the number of observations R for which astrometric results were calculated, the number of observations N for which the light curves showed no events, the number of observations S for which an occultation and an eclipse occurred at the same time and for which the astrometric results could not be obtained, the location of the observer, and if relevant their IAU code.

4. Lightcurves reduction

4.1. Photometric reduction

Mutual events can be recorded with a video camera which provides a movie, or a CCD camera which provides fits images. In both cases, we need the most precise datation, that is to say better than 0.1 s . Most of the time, aperture photometry is applied for the light flux extraction. This technique consists of summing the illuminated pixels of a satellite, and subtracting the contribution from the sky background. Many events were recorded with at least two satellites in the camera field, the occulted or eclipsed satellite, and one to three reference satellites. At least, one reference satellite is needed to minimize an eventual flux inconsistency due to the weather.

[^1]

Fig. 2. Europa occults Io on 06 January 2015. Dots denote observational data, line denotes the model adjustment. The lightcurve is perfectly modeled and the observation is not noisy.

Fig. 3. Io eclipses Ganymede on 21 January 2015. Dots denote observational data, line denotes the model adjustment. This observation shows a grazing event with a small magnitude drop. The signal is noisy and could be improved with a longer integrating time for each point.

For each event, we created a file containing metadata in the head lines, and following lines containing the UTC date, the measured flux (or magnitude) for the satellites involved in the event, and the flux (or magnitude) for the reference satellites. These files are provided in the IMCCE database as well.

Figures 2 to 6 show lightcurve examples and corresponding model adjustments. Figures 4 and 5 , in particular, show one event recorded by two different observers. The longer integration for each point in Figure 5 gives a signal less noisy than in Figure 4.

4.2. Astrometric reduction

We used the astrometric reduction method developed in Emelianov (2003), and in Emelyanov \& Gilbert (2006) to compute the astrometric results. This method has already been used in Arlot et al. (2014) and in our solution, we used the IMCCE NOE-5-2010-GAL satellite ephemerides. The method consists in fitting the event parameters to the observed light curve.

Astrometric results are given as intersatellite differential (X, Y) coordinates in equatorial positions, where $X=\Delta \alpha \cos \delta$

Fig. 4. Europa occults Io on 22 March 2015. Dots denote observational data, line denotes the model adjustment. The observation is noisy.

Fig. 5. Europa occults Io on 22 March 2015. Dots denote observational data, line denotes the model adjustment. This is the same event than in Figure 4 , but the integration time was different.

Fig. 6. Io eclipses Ganymede on 27 February 2015. Dots denote observational data, line denotes the model adjustment. This is a full eclipse.
and $Y=\Delta \delta$ at the instant of the satellites closest approach t^{*}. $\Delta \alpha$ and $\Delta \delta$ are the position differences in right ascension and declination, respectively, given in the 'occulting minus occulted' or 'eclipsing minus eclipsed' directions. We provide astrometric results in an ICRS topocentric frame in the case of mutual occultations, and in an ICRS heliocentric frame in the case of mutual eclipses. Note that in the case of full events, only the position angle P can be determined.

Once we fitted the event parameters to the observations, we were able to determine the normalized photometric measurements and the corresponding modeled light flux. The flux outside the event is 1 , and 0 if the satellite is completely occulted or eclipsed.

5. The resulting databases

5.1. Photometric results database

The normalized lightcurves are available in electronic form at the NSDB service of IMCCE. We composed a catalog which consists in 607 files, corresponding to the observations for which astrometric results were calculated. For each line of the files, we provide the UTC observation time in minutes starting from 0h at the event day, and the normalized photometric measurements of the event. By the end, we provide the modeled light flux calculated from the event parameters fitted to the observed lightcurve. Examples of modeling are shown in Figures 2 to 6, as red lines.

5.2. Astrometric results database

The astrometric results are divided in two sections. The first section is related to the events for which the differential (X, Y) coordinates could be computed, the second to the full events for which only the position angle P could be computed. In this last section, the apparent relative position of the satellite measured across the apparent trajectory can not be fixed definitively, and therefore position angles can be determined only up to ± 180 degrees.

Table 3 gives an extract of the astrometric results of the first section. Starting from the lefthand column, we provide the observatory code, the event type, the UTC date, the differential $\left(X\left(t^{*}\right), Y\left(t^{*}\right)\right)$ coordinates in equatorial positions, the internal errors characterizing the accuracy of the photometry estimated via the least-squares method, the (O-C) computed from the NOE-5-2010-GAL satellite ephemerides characterizing the agreement between theory and observations, the angular separation s, the position angle P, an estimation of the results quality and reliability Q, and the normalized flux minimum level $S_{\text {min }}$. The Observatory code identifies not only the observatory but also the precise site coordinates and the used telescope. Details are given in the explanation text accompanying the astrometric results in NSBD database. In the event type column, $N_{a} \mathrm{o} N_{p}$ denotes an occultation with the active (occulting) satellite number N_{a} and the passive (occulted) satellite number $N p . N_{a} \mathrm{e} N_{p}$ denotes an eclipse with the active (eclipsing) satellite number N_{a} and the passive (eclipsed) satellite number $N p$, as well. The position angle and the angular separation are respectively defined as:
$\tan P=\frac{Y}{X}, \quad s=\sqrt{(X)^{2}+(Y)^{2}}$
The estimation of the results quality and reliability Q could be:

[^2]

Fig. 7. Equatorial (O-C) according to NOE-5-2010-GAL ephemerides. The x-axis shows the RA (O-C) and y-axis the Dec (O-C). Red crosses denote the internal errors.

- 1 for the doubtful cases of photometric data (low-quality photometry, or divergent results for a same event, or a large shift in the time moment).

Table 4 gives an extract of the astrometric results of the second section. Starting from the lefthand column, we provide the observatory code, the event type, the UTC date, the position angle P, the internal error, and the ($\mathrm{O}-\mathrm{C}$) of the apparent relative satellite position along the satellite track computed from the NOE-5-2010-GAL satellite ephemerides. The internal accuracy corresponds to our positioning accuracy along the relative apparent path including the astrometric errors at 1σ, obtained with the least-squares method.

6. Accuracy of the astrometric results

We compared the positions of the Galilean satellites with their theoretical computed positions given by the NOE-5-2010-GAL satellite ephemerides. The distributions of the (O-C)s in differential coordinates and the corresponding internal errors are provided in Figure 7 and Table 5 They show the difference (RA, $\mathrm{Dec})$ coordinates for individual satellites, hence the observed positions versus positions calculated from NOE-5-2010-GAL ephemerides.

We used $Q=0$ as an indicator to define the best observations in our set. This concerns 511 observations. Offsets for the observation set are -1.8 mas and 0.1 mas in right ascension and declination, respectively. They are negligible and we may deduce that any mismodeling of photometric corrections remains.

The key point is that the NOE-5-2010-GAL rms (O-C) for all these observations is 49.9 mas. This average rms (O-C) on both right ascension and declination corresponds to our external observation accuracy.

7. Conclusions

The IMCCE and SAI organized the 2014-2015 PHEMU15 international observation campaign of the mutual events of the Galilean satellites. All the photometric observations of mutual occultations and eclipses were reduced. 607 astrometric results were calculated.

The internal precisions in equatorial positions are 23.2 mas and 20.2 mas in right ascension and declination, respectively.
Table 3. Extract of the astrometric results for which the differential coordinates in equatorial positions could be computed.

Obs. code	Type	$\begin{gathered} \hline \hline \text { Date } \\ \text { Y M D } \end{gathered}$	$\begin{aligned} & \hline \hline \text { UTC } \\ & \mathrm{h} \mathrm{~m} \mathrm{~s} \end{aligned}$	$\begin{gathered} X\left(t^{*}\right) \\ \operatorname{arcsec} \end{gathered}$	$\begin{gathered} Y\left(t^{*}\right) \\ \operatorname{arcsec} \end{gathered}$	$\begin{gathered} \sigma_{X} \\ \operatorname{arcsec} \end{gathered}$	$\begin{gathered} \sigma_{Y} \\ \operatorname{arcsec} \end{gathered}$	$\begin{gathered} \hline \hline O-C_{X} \\ \operatorname{arcsec} \end{gathered}$	$\begin{gathered} \hline O-C_{Y} \\ \operatorname{arcsec} \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \operatorname{arcsec} \end{gathered}$	$\begin{gathered} \hline \mathrm{P} \\ \mathrm{deg} \end{gathered}$	Q	$S_{\text {min }}$
ADS	4 e 3	20140911	205726.40	-0.2945	-0.1747	0.0120	0.0358	-0.0239	0.0022	0.3424	239.325	0	0.3619
KIS	3 e 4	20141007	000847.00	0.0523	0.1717	0.0025	0.0039	-0.0108	0.0913	0.1795	16.950	0	0.1113
KIS	203	20141021	020326.25	-0.2812	-0.7463	0.0274	0.0122	0.1930	0.1211	0.7976	200.642	1	0.9532
ADS	102	20141119	181432.65	-0.1432	-0.3692	0.0431	0.0363	0.3751	-0.0387	0.3960	201.197	1	0.7462
KUR	301	20141122	163456.93	-0.0954	-0.2483	0.0089	0.0164	-0.1058	-0.2080	0.2660	201.019	1	0.6050
ADS	103	20141126	183719.13	0.0962	0.2484	0.0188	0.0204	0.0427	0.0757	0.2664	21.168	0	0.7013
KIS	301	20141206	22157.88	0.1542	0.4006	0.0050	0.0049	0.0172	0.1056	0.4292	21.047	0	0.6603
ALM	2 e 3	20141209	22434.58	-0.2622	-0.7572	0.0137	0.0079	0.0289	0.0707	0.8013	199.098	0	0.9395
ARO	201	20141212	23438.80	-0.1194	-0.4123	0.0071	0.0088	-0.0022	-0.0071	0.4292	196.145	0	0.6104
PIC	2 e 1	20150106	223328.04	-0.2167	-0.6007	0.0030	0.0016	0.0086	-0.0136	0.6386	199.839	0	0.8647
OHP	2 e 1	20150106	223327.10	-0.2221	-0.6153	0.0046	0.0024	0.0014	-0.0275	0.6542	199.846	0	0.8778
OHP	201	20150107	000838.21	0.1540	0.3869	0.0016	0.0015	-0.0012	-0.0167	0.4164	21.705	0	0.7584
OHP	201	20150107	000820.36	0.1611	0.4046	0.0099	0.0094	-0.0463	0.0218	0.4355	21.705	0	0.7690
PIC	201	20150107	000838.78	0.1532	0.3847	0.0017	0.0015	-0.0005	-0.0195	0.4141	21.707	0	0.7572
PIC	201	20150107	000838.53	0.1524	0.3828	0.0051	0.0046	-0.0020	-0.0211	0.4120	21.704	0	0.7561
MUR	1 e 2	20150613	085146.45	0.2086	0.5111	0.0069	0.0047	-0.0115	-0.0088	0.5520	22.200	0	0.7138
KUR	1 e 2	20150613	085144.75	0.2104	0.5153	0.0070	0.0046	-0.0175	-0.0015	0.5566	22.208	0	0.7199
FLY	1 e 2	20150613	085157.88	0.1724	0.4226	0.0119	0.0088	0.0049	-0.1188	0.4564	22.191	0	0.8138
CAC	1 e 2	20150616	220131.55	0.2055	0.5024	0.0126	0.0088	-0.0162	-0.0260	0.5428	22.246	0	0.7014
UMA	201	20150626	045347.33	0.0969	0.2535	0.0083	0.0073	-0.0211	-0.0199	0.2714	20.918	0	0.7423

Notes. The full table is available at the NSDB service of IMCCE.

Table 4. Extract of the astrometric results for which only the position angle could be computed.

Obs. code	Type	Date Y M D	UTC h m s	P deg	σ arcsec	$O-C$ arcsec
VBO	2 o 4	20141127	220852.26	200.934	0.0044	0.0164
ALM	3 o 1	20141129	192351.85	21.076	0.0111	0.0510
ADS	3 o 1	20141214	184925.02	20.128	0.0027	0.0059
ALM	3 o 1	20141214	213113.25	22.385	0.0015	0.0336
		\ldots				
ELG	2 e 1	20150222	024515.28	200.622	0.0091	0.0223
ADS	2 o 1	20150225	151005.34	19.706	0.0035	0.0268
SEN	2 o 1	20150225	151010.26	19.640	0.0040	0.0538
VBO	2 o 1	20150225	151004.58	199.669	0.0018	0.0207
KOU	2 e 1	20150225	155510.32	20.606	0.0032	0.0194

Notes. The full table is available at the NSDB service of IMCCE.

Table 5. Details of the astrometric positions in mas, according to NOE-5-2010-GAL ephemerides.

	$X\left(t^{*}\right)$	$Y\left(t^{*}\right)$
$\overline{(O-C)}$	-1.8	0.1
rms (O-C)	39.2	60.7
Internal errors	23.6	24.6

The rms (O-C)s in equatorial positions are ± 39.2 mas and ± 60.7 mas in right ascension and declination, respectively. These results are better than those of the previous PHEMU09 campaign, and confirm the high interest in observing mutual events.

The next campaign will begin in January, 2021 and end in November, 2021. The occurence will be less favorable since the maximum of events will occur at the conjonction of Jupiter with the Sun. The 2021 campaign will be more favorable to the southern hemisphere, due to Jupiter declination.

Acknowledgements. This work was supported by the Russian Foundation for Basic Research, project No. 16-52-150005-CNRS-a.

References

Arlot, J.-E., Emelyanov, N., Varfolomeev, M. I., et al. 2014, A\&A, 572, A120
Dirkx, D., Lainey, V., Gurvits, L. I., \& Visser, P. N. A. M. 2016, Planet. Space Sci., 134, 82
Emelianov, N. V. 2003, Solar System Research, 37, 314
Emelyanov, N. V. \& Gilbert, R. 2006, A\&A, 453, 1141
Fienga, A., Manche, H., Laskar, J., Gastineau, M., \& Verna, A. 2014, IMCCE, Observatoire de Paris
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2016, A\&A, 595, A2
Lainey, V., Arlot, J.-E., Karatekin, Ö., \& van Hoolst, T. 2009, Nature, 459, 957
Robert, V., Saquet, E., Colas, F., \& Arlot, J.-E. 2017, MNRAS
${ }^{1}$ Institut Polytechnique des Sciences Avancées IPSA, 63 bis Boulevard de Brandebourg, 94200 Ivry-sur-Seine, France
${ }^{2}$ IMCCE, Observatoire de Paris, PSL Research University, CNRSUMR 8028, Sorbonne Universités, UPMC, Univ. Lille 1, 77 Av. Denfert-Rochereau, 75014 Paris, France
${ }^{3}$ M. V. Lomonosov Moscow State University - Sternberg astronomical institute, 13 Universitetskij prospect, 119992 Moscow, Russia
${ }^{4}$ Vainu Bappu Observatory, Indian Institute of Astrophysics, Bangalore, India
${ }^{5}$ International Occultation Timing Association (IOTA), North America and RECON, Gardnerville, NV, USA
${ }^{6}$ Observatoire des Baronnies Provencales, Moydans, France
${ }^{7}$ Cabudare, Venezuela
${ }^{8}$ Puig d'Agulles, Spain
${ }^{9}$ High-school Liceo G.Galilei, Siena, Italy
${ }^{10}$ Association T60, Observatoire Midi Pyrénées 14 Avenue Edouard Belin 31000 Toulouse, France
${ }^{11}$ Observatoire du Pic des Fees, 26 bis allee des pinsons, 83400 Hyeres, France
${ }^{12}$ Voronezh State University, Voronezh, Russia
${ }_{13}$ Armagh Observatory, College Hill, Armagh, BT61 9DG UK
14 Association Andromède Observatoire de Marseille, Marseille, France
${ }^{15}$ Nonndorf 12, 3830, Austria
${ }^{16}$ Club Eclipse, 1 rue des Peupliers, 92190 Meudon, France
17 Société Astronomique de France, commission des observations planétaires, 2, rue de l'Ardèche, 31170 Tournefeuille, France
${ }^{18}$ Observatório Nacional MCTI, rua Gal. J. Cristino 77, Rio de Janeiro, Brazil
${ }^{19}$ Naperville, near Chicago, IL, USA
${ }^{20}$ Observatoire de Dax, rue Pascal Lafitte, 40100 Dax, France
${ }^{21}$ International Occultation Timing Association (IOTA), PO Box 7152 Kent WA 98042, USA
${ }^{22}$ Fessenkov Astrophysical Institute, Alma-Ata, Kazakhstan
${ }^{23}$ GiaGa Observatory, Via Mozart 4, 20010 Pogliano Milanese, Italy
${ }^{24}$ American Association of Variable Star Observers (AAVSO), Elgin, Oregon, USA
${ }^{25}$ Kuriwa Observatory, 22 Booker Road Hawkesbury Heights N.S.W. 2777 Australia
${ }^{26}$ Department of Astrophysics, Astronomy and Mechanics, University of Athens, University Campus, 15784 Zografos, Athens, Greece
${ }^{27}$ International Occultation Timing Association (IOTA), Scottsdale, Arizona, 85255, USA
${ }^{28}$ Kourovskaya observatory of the Ural Federal University, Prospect Lenina 51, 620000 Ecaterinbourg, Russia
${ }^{29}$ Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, Russia
${ }^{30}$ Como, Italy
31 International Occultation Timing Association (IOTA), European Section, Barthold-Knauststr. 8, D 30459 Hannover, Germany
${ }^{32}$ Rokycany Observatory, Rokycany, Czech Republic
${ }^{33}$ Royal Astronomical Society of New Zealand, Occultation Section, International Occultation Timing Association, 14 Craigieburn Street, Darfield, New Zealand
${ }^{34}$ Murrumbateman, NSW, Australia
${ }^{35}$ Club d'astronomie d'Antony, Antony, France
${ }^{36}$ 6-2-69-403 Kamisugi, Aoba-ku, Sendai, Miyagi, 980-0011 Japan
${ }^{37}$ Egeskov Observatory, Syrenvej 6, 7000 Fredericia, Denmark
${ }^{38}$ Maidenhead, SL6 1XE, UK
${ }^{39}$ Société Astronomique de Tunisie, Tunis
${ }^{40}$ Hellenic Amateur Astronomy Association, Athens, Greece
${ }^{41}$ Nikolaev Astronomical Observatory, Ukraine
${ }^{42}$ Czech Astronomical Society - Occultation Section, Observatory Rokycany Werichova 950/9, 15200 Praha 5, Czech Republic
${ }^{43}$ Astronomical Observatory, Department of Physical Sciences, Earth
and Environment, University of Siena, Italy
${ }^{44}$ Club Eclipse, Salvia Observatory, Mayenne 53, France
${ }^{45}$ Société d'Astronomie de Rennes, Rennes 35000, France
${ }^{46}$ The Astronomical Institute of the Romanian Academy, Bucharest
Observatory, Str. Cutitul de Argint 5, 040557 Bucuresti, Romania
${ }^{47}$ Canberra Astronomical Association, Australia
${ }^{48}$ University of Applied Sciences, Friedberg, Germany
${ }^{49}$ Nyrola Observatory, Vertaalantie 449, Nyrölä, Finland
${ }^{50}$ Tangra Observatory, 9 Chad Pl, St Clair, NSW 2759, Australia
${ }^{51}$ Amiral Vasile Urseanu Observatory, Bucharest, Romania
${ }^{52}$ International Occultation Timing Association (IOTA), IOTA-ES, West Park Observatory, Leeds, England
${ }^{53}$ Archenhold-Observatory, Alt-Treptow 1, 12435 Berlin, Germany
${ }^{54}$ Valcha E2671, Plzeň, Czech Republic
${ }^{55}$ Groupement Astronomique Populaire de la Région d'Antibes, 2, Rue Marcel-Paul, 06160 Juan-Les-Pins, Antibes, France
${ }^{56}$ Wellington Astronomical Society, 3 Hughes St, Waikanae Beach, New Zealand
${ }^{57}$ International Occultation Timing Association (IOTA), Newark, NY USA
${ }^{58}$ Association Club Eclipse et club Albiréo78, Le Mesnil, Saint Denis Yvelines, 78320, France
${ }^{59}$ Dunedin Astronimical Society, Royal Astronomical Society of New Zealand
${ }^{60}$ Laval, Quebec, Canada
${ }^{61}$ Observatoire de Vesqueville, Vesqueville, Belgium
${ }^{62}$ Kasteelstraat 224, Tielt, Belgium
${ }^{63}$ National Aviation University, Kiev, Ukraine
${ }^{64}$ Université Lille 1, Impasse de l'Observatoire, F-59000 Lille, France
${ }^{65}$ SAF groupe Alsace, 8 rue des ormes 67450 Mundolsheim, France
${ }^{66}$ Club Eclipse, 22 rue du Borrego - BAL149, 75020 Paris
${ }^{67}$ International Occultation Timing Association (IOTA), Bahnhofstrasse 117, Biesenthal 16359, Germany
${ }^{68}$ Pod Lipou 1532, Hořice, Czech Republic
e-mail:
eleonore.saquet@obspm.fr;
eleonore.saquet@ipsa.fr

Table 2. Observation sites for the PHEMU15 campaign. We provide the number of observations received O, the number of observations R for which astrometric results were calculated, the number of observations N for which the light curves showed no events, the number of observations S for which an occultation and an eclipse occurred at the same time and for which the astrometric results could not be obtained, the location of the observer, and if relevant their IAU code.

O	R	N	S	Site, Country	IAU code
Source I					
11	10	1	0	Haute-Provence Obs., France	511
27	24	3	0	Pic du Midi Obs., France	586
Source A					
48	47	1	0	Desert Springs, Australia	
3	3	0	0	Umatilla, USA	
41	41	0	0	Scottsdale, USA	
10	10	0	0	Kuriwa Obs., Australia	E28
9	7	0	2	Tunis, Tunisia	
16	15	0	1	La Couyere Astro. Center, France	J23
36	35	1	0	Murrumbateman, Austrialia	E07
14	14	0	0	Puig d'Agulles, Spain	
8	8	0	0	Tangra Obs., France	E24
5	5	0	0	Elgin, USA	440
5	5	0	0	Toulon, France	
10	10	0	0	Kourovskaya, Russia	168
8	8	0	0	Chaneyville, USA	
16	12	4	0	Mundolsheim, France	
5	5	0	0	Cogolin, France	
18	17	0	1	West Park Obs., England	Z92
5	5	0	0	Itajuba, Brazil	874
5	5	0	0	Iguacu, Brazil	X57
2	2	0	0	Como, Italy	C13
1	1	0	0	Arnold, USA	
3	3	0	0	Vesqueville, Belgique	231
11	11	0	0	Newark, USA	H95
2	1	1	0	Baronnies Provencales Obs., France	B10
7	7	0	0	Waikanae, New Zealand	
1	1	0	0	Kingman, USA	
5	4	1	0	Marseille, France	
6	6	0	0	Tielt, Belgium	
2	2	0	0	Dax Obs., France	958
2	2	0	0	Hyères, France	
3	3	0	0	Siena, Italy	K54
6	4	1	1	Trebur, Germany	239
1	1	0	0	Gardnerville, USA	
9	9	0	0	Montigny-le-Bretonneux, France	
2	2	0	0	Malemort-du-Comtat, France	
2	1	1	0	Darfield, New Zealand	
2	2	0	0	Gretz-Armainvilliers, France	A07
4	4	0	0	Cabudare, Venezuela	
2	2	0	0	Nikolaev, Ukraine	089
1	1	0	0	La Grimaudière, France	
6	3	3	0	Flynn, Australia	
7	7	0	0	Egeskov Obs., Danemark	
4	3	1	0	Salvia Obs., France	I73
11	11	0	0	Biesenthal, Germany	
2	2	0	0	Maidenhead, England	I64
6	6	0	0	Oberkrämer, Germany	
1	1	0	0	Wokuhl-Dabelow, Germany	
6	6	0	0	Rokycany Obs., Czech Republic	K61
6	6	0	0	Berlin, Germany	
1	1	0	0	Slovice, Czech Republic	
1	1	0	0	Fouras, France	
24	24	0	0	Vainu Bappu Obs., India	220
13	12		0	Horice, Czech Republic	
14	13	1	0	Alma-Ata, Kazakhstan	210

Article number, page 8 of 9

Table 2. continued.

				IAU	
O	R	N	S	Site, Country	code
1	1	0	0	Antibes, France	139
12	11	1	0	Sendai, Japan	391
13	13	0	0	Nonndorf, Austria	C47
6	6	0	0	GiaGa Obs., Italy	203
1	1	0	0	Saulges, France	I73
1	1	0	0	Wanaka, New Zealand	
2	0	0	2	Dienville, France	
2	2	0	0	Gassin, France	
1	1	0	0	Le Mesnil-Saint-Denis, France	
44	44	0	0	Pulkovo Obs., Russia	W08
2	2	0	0	Naperville, USA	C20
7	7	0	0	Pulkovo-Kislovodsk, Russia	073
4	4	0	0	Voronezh, Russia	818
17	16	1	0	Bucharest, Romania	981
6	6	0	0	Laval, Canada	066
28	23	3	2	Armagh Obs., Northern Ireland	174
4	4	0	0	Athens, Greece	
2	2	0	0	Nyrola Obs., Finland	
12	12	0	0	Praha, Czech Republic	
641	607	34	9	TOTAL	

[^0]: * Full Tables 3 and 4 are available in electronic form at the Natural Satellites DataBase service of IMCCE via http://nsdb.imcce.fr/ obsphe/obsphe-en/fjuphemu.html
 *x Thirty-elght mutual events were recorded at the 1 m telescope of Pic du Midi Observatory (S2P) and at the 80 cm and the 1 m 20 telescopes of Haute-Provence Observatory.

[^1]: ${ }^{1}$ Full explanation table is available in electronic form at the NSDB service of IMCCE via http://nsdb.imcce.fr/obspos/phemuAR/ explan2_e.htm

[^2]: - 0 for nominal determination of the position coordinates,

