Comparaison Astrophotométrique d'une Image Numérique avec la base de données Gaia / GRAPPA version du 10 Février 2024 pour la version 1.4

par Marc SERRAU – Elisabeth MARIS

(http://www.astrosurf.com/CCD-GRAPPA)

Prérequis :

- Disposer de la base GRAPPA installée et paramétrée dans PRISM V11 ou dans votre utilitaire d'analyse astrophotométrique. Cette installation n'est pas décrite dans ce document. Voir ici : <u>http://www.astrosurf.com/noctambule/GRAPPA3E_FrEn.html</u> pour tout savoir sur cette base, notamment où et comment la récupérer.

- Disposer d'images déjà prétraitées et prises avec des filtres RAPAS qui s'approchent des bandes passantes des pseudo-filtres de Gaia G, G_BP et G_RP. Les champs de calibration à utiliser (SA51, SA57, SA68...) sont indiqués sur le site RAPAS (<u>http://rapas.imcce.fr/Photometrie-calibration.html</u>)

- Disposer de PRISM V11 ou de SIRIL ou d'un outil capable de sortir les positions astrométriques , flux et magnitudes de toutes les étoiles d'un champ stellaire.

- Disposer de l'utilitaire CCD-GRAPPA.exe (<u>http://www.astrosurf.com/CCD-GRAPPA</u>) utilisé dans la seconde partie de ce document.

<u>Méthode</u> :

Il va s'agir de disposer d'images de champs de calibration prises avec les filtres RAPAS A, B ou C dont on va extraire les positions et les magnitudes de toutes les étoiles. Ces données seront ensuite analysées par l'utilitaire CCD-GRAPPA qui comparera les magnitudes mesurées aux magnitudes G, G_BP ou G_RP du catalogue GAIA / GRAPPA respectivement.

I. Les données de départ

I.1 Extraction avec PRISM V11

L'utilitaire a besoin des résultats d'analyses astrométriques et photométriques de toutes les étoiles d'une image issus de PRISM V11,

Régler les paramètres propres à votre système d'observation (focale, taille des pixels) et à la prise de vue (orientation).

transformation :

Choisir **GAIA_DR2/EDR3_Calalog** (C'est GRAPPA). Appuyez sur **OK**.

Choisir un degré de polynôme (3 suffit en général) puis appuyez sur **Calcul**.

Si les résidus sont très faibles, appuyez sur **OK** sinon changez le degré du polynôme,

Après quelques instants, on voit la fiche de

Une fois la calibration effectuée, PRISM affiche les résidus de chaque étalon trouvé sur l'image en vert. Exemple :

2. Extraction des positions de toutes les étoiles

Cliquer sur l'image calibrée et lancer la mesure sur toutes les étoiles :

Une fenêtre de sortie texte apparaît. Conserver la fenêtre des résultats.

3. Calibration photométrique de l'image

Cliquer sur l'image puis :

Normalement, les paramètres propres à votre système d'observation (focale, taille des pixels) et à la prise de vue (orientation) sont déjà réglés par l'opération précédente.

Choisir GAIA_DR2/EDR3_Calalog (C'est GRAPPA).

Choisir la bande spectrale correspondant à la prise de vue :

Bande Magnitude V = Gaia G = RAPAS A Bande Magnitude B = Gaia G_BP = RAPAS B Bande Magnitude R = Gaia G_RP = RAPAS C

Un polynôme de degré 2 doit suffire.

Appuyez sur OK.

Dans la fenêtre qui apparaît, choisir les étalons avec les résidus les plus faibles puis lancer la calibration avec OK.

Nombre d Magnitud	l'étoiles uti e bande B	lisées : 54				
<u>C</u> alc	ul					
N*	Num			résidus	Mag.	
×. 22	22	1811.3	1869.3	-0.0173	11.40	
23	23	2211.5	1190.2	-0.0168	13.89	
24	24	1359.4	1544.1	-0.0107	12.30	
× 25	25	288.3	143.5	-0.0100	13.05	
≷/26	26	2663.0	849.0	-0.0058	12.85	
_ √ 27	27	701.3	1067.2	-0.0010	13.13	
_ ≼/ 28	28	484.2	652.9	0.0011	13.16	
_ √/ 29	29	2903.9	617.9	0.0055	12.46	
√30	30	2334.6	770.8	0.0069	13.53	
√/_31	31	2878.0	739.4	0.0091	12.79	
1/ . 34	34	020.2	037.1	0.0130	10.00	
💥 33	33	530.3	315.9	0.0150	13.80	
Ж. 34	34	1567.1	1375.8	0.0160	13.90	
35	35	1445.1	1280.6	0.0169	13.37	-
		01				

Une fois la calibration effectuée, PRISM affiche les résidus de chaque étalon trouvé (en rouge sur l'image). Exemple où les résidus astrométriques sont aussi présents :

4. Extraction de la magnitude de toutes les étoiles

Cliquer sur l'image calibrée et lancer la mesure sur toutes les étoiles :

La fenêtre de sortie texte se complète des résultats de l'analyse photométrique. A la fin du calcul qui peut durer quelques secondes selon la richesse du champ, cliquer sur l'icône d'enregistrement du texte pour sauvegarder celui-ci dans un fichier. (Exemple 'AnalyseAstroPhotoChampSA68-G.txt')

I.2 Données de départ avec SIRIL

<u>Télécharger et installer SIRIL pour le traitement des données et Aladin pour les données de calibration d'une étoile avec les 3 filtres</u>

Dans Siril:

1. <u>Ouvrir l'image</u> stackée par exemple SA 51 puis passer de linéaire à Auto Ajustement pour que les étoiles apparaissent. **1**

2. Calibration de la magnitude d'une étoile du champ avec Aladin, catalogue Gaia

Dans Siril mode photométrie 2

2.1 Sur Siril sélectionner le mode photométrie 3

sélectionner une étoile dont la magnitude est connue avec le catalogue Gaia dans Aladin pour les filtreG Gbp, Grp

2.2 Ligne de commande **4** régler la magnitude de référence lue sur Aladin avec « setmag 16.09 » par exemple et puis OK.

2.3 Sélectionner à nouveau l'icône photométrie **3** pour voir s'afficher la magnitude de l'étoile calibrée avec le catalogue Gaia avec son S/B, ce dernier doit être satisfaisant, c'est à dire supérieur à 10.

3. PSF du champ d'étoile :

3.1 Sélectionner PSF dynamique **5**

Régler les paramètres Seuil et profil sur 0.1 par exemple et Moffat puis cliquer sur **6**.

Le nombre d'étoiles identifiées est indiqué sous Profil. En modifiant l'indice de seuil, le nombre d'étoiles change. Un tableau de données indique les coordonnées les AD et DEC des étoiles ainsi que leur MAG et l'écart type de leur résidu.

4. Exporter les données en format texte en cliquant sur 7

I.3 Données de départ avec tout autre outil

L'outil doit pouvoir générer un fichier .csv contenant sur une ligne par étoile :

AD,DEC,Flux,magnitude ou au minimum : AD,DEC,Flux

où :

AD est l'Ascension Droite de l'étoile en degré décimaux compris dans [0, 360]

DEC sa Déclinaison en degré décimaux positif ou négatif compris dans] -90°, +90°[

Flux est le flux mesuré pour l'étoile

Magnitude est la magnitude calculée avec des magnitudes étalons de GAIA de la même bande spectrale (Comme au §I.1.3 : RAPAS A = GaiaG / RAPAS B = Gaia_BP / RAPAS C = Gaia_RP)

II. Correspondance entre les mesures faites sur l'image et le catalogue GRAPPA-E3

L'utilitaire **CCD-GRAPPA.exe** (voir la page <u>http://www.astrosurf.com/noctambule/CCD-GRAPPA/</u>) a été développé pour effectuer automatiquement la mise en correspondance entre les données générées précédemment et une extraction de la base GRAPPA E3.

Ce programme récupère les données présentes qui contiennent les résultats des analyses astrométriques et photométriques sur toutes les étoiles de l'image. Il effectue ensuite une recherche dans GRAPPA des sources en correspondance avec les étoiles de l'image.

Lancer le programme. Une fenêtre principale s'ouvre :

CCD - GRAPPA v1.4				-		×
Nom du fichier des données a	astrométriques et photo	métriques issues des analyses de tout	es les étoiles d'une image :	2 0		
Sorties PRISM V11	◯ Sortie SIRIL	O.CSV avec AD,DEC,Flux,Mag	O.CSV avec AD,DEC,flux			
Option 'Collapse' : additio	on des flux des sources d	d'une même étoile le G la plus faible			Analyse	r
Option Erreur de position	(arcsec)					
Option de magnitude limi	te à ne pas dépasser dar	ns la recherche dans GRAPPA	sur la bande 🛛 🧹 🗸			
Crée un fichier .log						
Répertoire d Aide	e la base GRAPPA 3E			1		

Ainsi qu'une fenêtre d'aide qui reprend l'essentiel de ce qui est écrit ici.

En premier lieu, renseigner le chemin de la base de données GRAPPA (celui contenant les répertoires 1, 2, 3...) (Bouton 1)

Puis, renseigner le nom du fichier de données à analyser (Bouton 2)

Choisir l'origine des données (PRISM V11, SIRIL ou fichier .CSV).

Les options les plus importantes sont :

Collapse' qui effectue une intégration des flux de toutes les sources GRAPPA en correspondance avec les étoiles associées à plusieurs sources. Les magnitudes cumulées G, G_BP et G_RP sont recalculées. La position indiquée sera celle de la première source trouvée.

'xmax' renvoie les magnitudes G, G_BP et G_RP de la source la plus brillante dans GRAPPA trouvée en correspondance. La position indiquées sera celle de la première source trouvée.

Ces deux options s'excluent mutuellement. Si aucune de ces deux options n'est fournie, alors l'utilitaire fournira toutes les sources GRAPPA en correspondance avec les étoiles associées à plusieurs sources avec leurs magnitudes et positions du catalogue.

L'option '*erreur de position*' permet de définir une valeur en *arcsec* donnant l'écart maximal en ascension droite et déclinaison à considérer pour l'identification des étoiles. Plus cette valeur sera grande plus il y a de chance de trouver une correspondance avec une source GRAPPA voire

plusieurs. Par défaut, l'utilitaire utilise la valeur de 1 arsec mais selon le seeing de l'image, on peut réduire ou augmenter légèrement cette valeur.

L'option de *magnitude limite* permet d'indiquer une magnitude à ne pas dépasser lors de la recherche des sources GRAPPA présentes sur le champ de l'image. La valeur sera associée à un filtre (G, G_BP, G_RP). La magnitude limite permet d'accélérer la mise en correspondance ultérieure avec les étoiles de celle-ci. La valeur peut être déduite de la magnitude limite atteinte sur l'image si celle-ci est faible et connue approximativement. Par défaut, il n'y a pas de limite en magnitude.

Le choix du filtre est à renseigner en fonction de celui utilisé pour la prise de vue.

Le mode 'Bavard' renseigne un fichier 'AnalyseCCD-GRAPPA.log' avec différentes informations utilisées ou générées par le programme lors de l'analyse.

Une fois les option définies, cliquer sur le bouton 'Analyser'.

Le nom du fichier qui contiendra les résultats de l'analyse sera demandé à la fin du processus.

A la fermeture du programme, le nom du fichier à analyser ainsi que celui du répertoire de la base GRAPPA seront stockés dans le fichier CCD-GRAPPA.ini qui sera lu lors de la prochaine exécution du programme.

Le bouton Aide affiche à nouveau la fenêtre d'aide.

Exemple d'utilisation avec l'option 'Collapse' et une magnitude limite de 15 dans la bande bleue.

饕 CCD - GRAPPA v1.4				_		×
Nom du fichier des données a	astrométriques et photo	ométriques issues des analyses de toute	s les étoiles d'une image :			
\\Mnemosyne\Astronomie\A	Associations\RAPAS\Ca	libration SA51 E. Maris\stars v2.lst				
Sorties PRISM V11	⊖ Sortie SIRIL	O.CSV avec AD,DEC,Flux,Mag	O.CSV avec AD,DEC,flux			
Option 'Collapse' : additio	n des flux des sources o	d'une même étoile		L	Analyse	.r
Option xmax : sélection de	e la source de magnitud	le G la plus faible				
Option Erreur de position ((arcsec)					
🗹 Option de magnitude limit	te à ne pas dépasser dai	ns la recherche dans GRAPPA 15	sur la bande 🛛 🕞 🗸 🗸			
🔽 Crée un fichier .log						
_						
Répertoire de	e la base GRAPPA 3E					

Exemple de début de fichier obtenu avec l'option 'Collapse' et des données venant de PRISM V11 :

I	ſ									
comp	araison_collapse.txt 🖄	()	510 (June)				-			
	NUM.: X Y	KA (HMS)	DEC (HMS)	KA (g.dec)	DEC (d.dec)	maguun	DID	SOURCE_ID KA GKAPPA	DEC GKAPPA mag G n	nag by mag ky
2	1 2205.9 1594.2	18h57m01.197s	+16d57'25.51''	284.25498727	16.95708590	10.075	1	4514105808899116160 284.25499221	16.95710067 9.560 1	10.244 8.760
	2 2589.9 1745.1	18h56m47.168s	+16d58'40.09''	284.19653233	16.97780357	11.214		4514107561245886976 284.19652722	16.97781654 10.827 1	11.108 10.368
	3 1811.3 1869.3	18h57m15.301s	+16d59'52.73''	284.31375442	16.99798018	11.420		4514106324295684992 284.31376046	16.99799260 9.980 1	11.404 8.824
	4 797.8 640.1	18h57m52.871s	+16d49'23.47''	284.47029651	16.82318574	11.594		4514088319791822976 284.47028368	16.82318981 10.600 1	11.621 9.613
	5 482.2 1300.5	18h58m03.866s	+16d55'10.05''	284.51610709	16.91945938	11.711		4514097974878400640 284.51612545	16.91953942 11.151 1	11.605 10.534
	6 2160.0 1582.2	18h57m02.868s	+16d57'19.78''	284.26194832	16.95549472	12.052		4514105740179629824 284.26194052	16.95550905 11.681 1	11.937 11.263
	7 2453.2 1525.4	18h56m52.284s	+16d56'47.19''	284.21785166	16.94644141	12.084		4514107252008159488 284.21786461	16.94647998 11.659 1	12.051 11.092
	8 1051.9 2010.4	18h57m42.736s	+17d01'13.79''	284.42806472	17.02049586	12.254		4514111409536933888 284.42806581	17.02049297 11.761 1	12.156 11.186
10	9 1359.4 1544.1	18h57m31.910s	+16d57'08.09''	284.38295664	16.95224642	12.311		4514105121704185216 284.38297192	16.95224093 11.436 1	12.301 10.527
11	10 3041.2 2026.2	18h56m30.597s	+17d01'01.75''	284.12748624	17.01715260	12.342		4517111117768823680 284.12751676	17.01713641 11.855 1	12.184 11.356
12	11 2440.2 434.8	18h56m53.537s	+16d47'20.01''	284.22307283	16.78889174	12.371		4508097321449096704 284.22307709	16.78890489 11.019 1	12.476 9.851
13	12 504.7 1633.1	18h58m02.831s	+16d58'02.83''	284.51179601	16.96745255	12.384		4514099417970942976 284.51181388	16.96746511 11.336 1	12.343 10.343
14	13 1349.3 190.3	18h57m33.207s	+16445'24.02''	284.38836205	16.75667280	12.411		4514086498725679616 284.38829681	16.75653795 14.826 1	16.078 13.728
15	14 1367.1 179.7	18h57m32.568s	+16d45'18.33''	284.38569951	16.75509153	12.434		4514086498725680128 284.38569866	16.75509878 9.812 1	12.470 8.389
16	15 2903.9 617.9	18h56m36.611s	+16d48'50.38''	284.15254697	16.81399496	12.449	1	4508098283521562880 284.15257280	16.81399784 12.090 1	12.456 11.546
17	16 2928.5 329.2	18h56m35.931s	+16d46'19.90''	284.14971238	16.77219389	12.732		4508097046570942976 284.14971355	16.77220917 12.407 1	12.722 11.927
18	17 2878.0 739.4	18h56m37.461s	+16d49'53.84''	284.15608583	16.83162256	12.784		4508098386600794368 284.15606375	16.83159779 12.454 1	12.795 11.941
19	18 1971.2 417.6	18h57m10.532s	+16d47'15.95''	284.29388396	16.78776465	12.853		4514090106498361472 284.29387709	16.78775542 12.132 1	12.971 11.231
	19 2663.0 849.0	18h56m45.172s	+16d50'53.12''	284.18821800	16.84809023	12.859		4514103266278375168 284.18821155	16.84808617 12.531 1	12.854 12.040
21	20 70.0 305.9	18h58m19.462s	+16d46'36.65''	284.58108962	16.77684775	12.860		4514040521072365440 284.58108835	16.77684834 12.329 1	12.711 11.777
22	21 2521.4 643.9	18h56m50.446s	+16d49'07.96''	284.21019278	16.81887771	12.949		4508097626365080320 284.21019431	16.81888140 12.307 1	13.096 11.407
23	22 1992.3 1799.1	18h57m08.789s	+16d59'14.35''	284.28662234	16.98732058	12.953		4514105980697823232 284.28662885	16.98732144 12.540 1	12.862 12.052
24	23 2272.0 861.6	18h56m59.324s	+16d51'03.79''	284.24718311	16.85105287	13.126		4514102574759853184 284.24719112	16.85105973 12.387 1	13.223 11.491
25	24 701.3 1067.2	18h57m56.080s	+16d53'06.55''	284.48366521	16.88515320	13.135		4514091957600740736 284.48366534	16.88515856 12.313 1	13.135 11.426
	25 484.2 652.9	18h58m04.223s	+16d49'33.16''	284.51759723	16.82587848	13.159		4514088452907385728 284.51759995	16.82589621 12.291 1	13.161 11.377
27	26 60.0 1831.6	18h58m18.832s	+16d59'50.44''	284.57846851	16.99734571	13.184		4514100272657415936 284.57846760	16.99734200 12.349 1	13.107 11.498
	27 2126.3 1726.6	18h57m03.984s	+16d58'35.22''	284.26660170	16.97644864	13.289		4514105942014248192 284.26660635	16.97646378 12.322 1	13.338 11.337
	28 2476.3 950.9	18h56m51.860s	+16d51'48.11''	284.21608188	16.86336431	13.293		4514103403717319168 284.21608209	16.86337575 12.572 1	13.398 11.684
30	29 1445.1 1280.6	18h57m28.984s	+16d54'50.14''	284.37076527	16.91392665	13.350		4514092786558065664 284.37076523	16.91392676 12.577 1	13.373 11.708
31	30 181.8 108.8	18h58m15.544s	+16444'53.07''	284.56476513	16.74807392	13.357		4514040314913936640 284.56477148	16.74807663 12.259 1	13.338 11.242
32	31 2385.4 1807.2	18h56m54.538s	+16d59'14.55''	284.22724070	16.98737375	13.361		4514109073074776192 284.22712054	16.98749947 15.646 1	16.241 14.877
	32 620.2 837.1	18h57m59.172s	+16d51'07.67''	284.49655011	16.85213003	13.378		4514088835193557248 284.49655826	16.85214867 12.567 1	13.392 11.678

La partie gauche du tableau correspond à la définition des étoiles extraites de l'image par PRISM et la partie droite les sources GRAPPA associées à ces étoiles. NbID est le nombre de source associée à chaque étoile de l'image. Ici c'est 1 puisque l'option collapse a été utilisée.

Ce tableau peut ensuite être mis dans un tableur afin de tracer facilement un graphique de correspondance magnitude CCD vs magnitude GAIA.

mag RAPAS BP vs mag Gaia BP

L'exemple présenté ci-dessus est établi à l'aide d'une image obtenue avec du filtre RAPAS Bleu calibrée photométriquement dans PRISM avec le catalogue GRAPPA. La courbe en noir est la droite de régression linéaire obtenue par les moindres carrés sur tous les points de mesure.

On peut ensuite établir facilement la valeur RMS des écarts des mesures en calculant pour chaque mesure son écart avec la magnitude Gaia et en calculant la racine carré de la somme des carrés des écarts.

Conclusion

L'utilitaire permet de connaître la loi de corrélation entre les filtres RAPAS A, B et C et les «pseudo-filtres GAIA G, G_BP et G_RP à partir d'observation sur le ciel. Ces corrélations permettront in fine de caractériser ces filtres en utilisant les résultats obtenus par différents observateurs et par là même de caractériser les systèmes photométriques complets utilisés.