messier63

La CCD de rêve c'est FLi qui l'a fait en premier...

Recommended Posts

Il y a un antiblooming sur ces capteurs?

Jérôme

Edited by messier63

Share this post


Link to post
Share on other sites
Publicité
En vous inscrivant sur Astrosurf,
ce type d'annonce ne sera plus affiché.
Astronomie solaire : la bible est arrivée !
400 pages, plus de 800 illustrations !
Les commandes sont ouvertes sur www.astronomiesolaire.com

J'ai acheté une caméra QHY42 en avril 2018, en comptant sur son extrême efficacité (QE et bande passante) pour améliorer les mesures de transit d'exoplanètes. 

J'ai d'abord mesuré les paramètres de la caméra, parce qu'il y a très peu de données sur ce sujet, y compris sur le site de QHYCCD. C'est la première partie de la pièce jointe

Puis, j'ai ensuite essayé la caméra "sur le ciel" et notamment sur la précision que l'on peut atteindre sur des mesures de flux d'étoiles.

En résumé, je en regrette pas cet achat avec deux remarques :

- le logiciel d'acquisition est encore assez buggé, ce qui énerve pas mal !! mais n'est pas fatal 

- il est nécessaire de changer l'approche concernant les longues poses : la caméra extrêmement sensible (c'est une qualité) sature très vite (c'est un défaut) il ne faut pas hésiter à changer des poses de 60 secondes par 30 poses de 2 secondes par exemple.

Mais le résultat est très prometteur  !!

N'hésitez pas à me contacter pour plus de détail 
Bruno

Mesures QHY42 %22on sky%22 .pdf

Mesures QHY42 testbed V3 .pdf

  • Like 2
  • Love 1

Share this post


Link to post
Share on other sites

Voici ce qui me fait peur avec QHY:

"- le logiciel d'acquisition est encore assez buggé, ce qui énerve pas mal !! mais n'est pas fatal"

 

En utilisation automatique, c'est juste mortel!! Si le driver ascom est pourris, c'est tout simplement pas utilisable!! J'entend beaucoup de monde se plaindre de la partie soft des cameras QHY, et c'est bien dommage.

 

Laurent Bernasconi 

 

Share this post


Link to post
Share on other sites

J'ai utilisé une alta U42.

Super sensible mais le laser pour amincir le ccd et le rendre hyper sensible laisse une sorte de "matrice", ou quadrillage" en surface qui est visible sauf en halpha et que je n'arrivais jamais à enlever complètement même avec de supers bon flats!

Tu n'as pas ça toi? tu as un exemple d'image faite avec?

jérôme

Share this post


Link to post
Share on other sites

Avec les CCD aminci, en plus du flat classique, il faut un flat de nuit, fait sur le ciel.

Et biensur il faut que le logiciel de prétraitement accepte de travailler avec les deux flats. Prism le fait, je ne sais pas pour les autres.

Une autre solution, et de couper en permanence les infrarouges lors de l'acquisition des images, généralement ca élimine les frange d'interférence. Donc plus besoin de flat de nuit.

 

Amitiés,

Laurent Bernasconi

Share this post


Link to post
Share on other sites

Je suis 100% d'accord avec Laurent 51eme du nom !

Un soft qui merdouille c'est rédhibitoire en "remote" !

J'espérais beaucoup des caméras QHY et les nouveaux CMOS mais le fait que leur driver soit bancal me refroidit beaucoup

 

 

Sur les CCD BSI, il faut un traitement anti-etalonning sur la surface du CCD pour diminuer les franges d'interférences à partir de 700nm (ou couper tout source NIR). C'est un coating anti-reflet très spécifique.

 

Sur les CMOS BSI, il n'y a presque pas d'etalonning. Notamment sur le Gsense400. C'est une très bonne chose.

Edited by Philippe Bernhard
  • Like 1

Share this post


Link to post
Share on other sites

Bonjour,

Merci pour tous ces tests de capteur, bien que trop cher pour moi, c'est super intéressant ;)
 

Il y a 5 heures, Laurent51 a dit :

Avec les CCD aminci, en plus du flat classique, il faut un flat de nuit, fait sur le ciel.


Pour quelle raison ? J'avoue que je sèche :D

Romain

 

Share this post


Link to post
Share on other sites
Citation
il y a 22 minutes, Roch a dit :

Pour quelle raison ? J'avoue que je sèche :D

 

 

Plutôt que des km d'explication, voici le premier exemple que j'ai trouvé sur le net:

http://www.obs-bp.com/article-ccd-carte-d-interference-121854506.html

 

Et biensur la page de Cyril Cavadore:

http://www.astrosurf.com/cavadore/technical/detectors/CCD_backthinned/CCD_lumiere.html

 

Ca te donne une idée des franges d'interférences et de la manière de traiter le probleme.

 

Laurent Bernasconi

Edited by Laurent51
  • Like 1

Share this post


Link to post
Share on other sites

Pour la qualité du logiciel de la QHY42, j'aimerai être précis !

L'installation n'a été possible qua grâce au support du Dr Qin lui-même ! Maintenant que j'ai vu, je peux installer drivers et autres composants sans problème, mais la première fois c'est pénible (beaucoup à cause de Windows 10 il est vrai - avec 7 et 8 no problemo).  !! Disons que les choses s'améliorent !

Je suis totalement en remote ! et le système est stable !

Des difficultés pour passer en USB 3 à travers une connection IP.  Finalement, cela marche OK avec une passerelle SILEX 600, à condition de ne pas descendre en dessous de 0,5 sec de temps de pose.

Les problèmes sont plutôt :

- l'offset a besoin d'être réglé deux fois pour être pris en compte (avec Maxim DL)(Mystère !)

- quand on déconnecte la caméra, ML plante (ainsi d'ailleurs que tous les autres softs)

- mais les drivers semblent sains et fiables

J'ai pu prendre 4 heures d'images de 2 secondes sans problème et aucun arrêt.

Voilà pourquoi c'est agaçant mais pas fatal !! 

(c'est vrai aussi pour qui a connu le soft de FLI, c'est une grosse régression ;))

Share this post


Link to post
Share on other sites
Le 27/01/2018 à 08:43, Invité a dit :

Et soit on nous sort des capteur rikiki avec 2.4µm de pixel ! ...soit on nous sort 11µm à 16000€ !

Tu vas donner des idees a certains...une place a prendre qui arrangerait nous tous.

Share this post


Link to post
Share on other sites

@brno92 Je suis particulièrement impressionné par la qualité du contenu de tes deux documents. C'est une véritable petite mine d'informations. Merci beaucoup pour ce partage.

 

En passant aussi, très beau setup et tu as l'air de faire des manip de photométrie bien maitrisées.

Share this post


Link to post
Share on other sites

@Dolguldur : merci du compliment ! En fait, j'ai beaucoup hésité et beaucoup galèré sur ce sujet de la QHY 42, et je me suis dit, faisons un petit effort pour rédiger tout ce qui m'a pris 6 mois à acquérir pour le partager avec les autres !!

Share this post


Link to post
Share on other sites

Enfin, un peu de ciel clair pour faire quelques images, M33 en l'occurence

Comparaison de photos faites avec une camera Starlight SX 694 doté d'un capteur Sony ayant une très bonne efficacité  quantique (tp=30 secondes) et une photo de 150x2 secondes QHY42. La différence est assez flagrante. Il faut environ 90 secondes avec la SX 694 pour atteindre le même SNR que la QHY 42.

 

La deuxième image est 150 x 2 secondes QHY 42 (G=7, soit 0.45 e-/ADU) : pas mal pour juste 5 minutes d'exposition 

 

 

Comparison SXV 694 and QHY 42.jpg

M33 QHY42 G07 150x2 sec.jpg

  • Like 2

Share this post


Link to post
Share on other sites

Pour les exo-planètes, ce n'est pas une bonne idée de faire des poses unitaires de 2 secondes, tu vas avoir du bruit de scintillation. Et comme il faut le meilleur rapport signal/bruit, à moins d'avoir un télescope gigantesque ou chercher une exo sur Véga, en 2sec, ton S/B n'ira pas bien loin.

Il faut aussi un auto-guidage parfait. L'objectif est que ton exo-planète et tes étoiles de comparaison restent sur les mêmes pixels de ta CCD (la réponse d'un pixel est différente d'un pixel à un autre, si ton étoile de comparaison se balade, tu introduis une dispersion dans les mesures liée à la réponse différente de chaque pixel).

Marc

Share this post


Link to post
Share on other sites

Sur le plan théorique pur et statistiquement, une exposition de 10 secondes est exactement équivalente à 10 expositions de 1 seconde en ce qui concerne le rapport signal bruit (et condition bien sur que le read noise soit négligeable par rapport au reste).

Pour la scintillation, celle-ci baisse exactement dans les mêmes proportions.

Cela se comprend assez bien "naturellement" puisqu'a priori le CCD ne sait pas faire la différence entre un flux d'électrons de 10 secondes et un flux qui arriverait comme 10 fois de manière successive un image de une seconde! Sinon, cela se démontre aussi mathématiquement!  D'ailleurs Bruce Gary  met en garde sur la tentation de pratiquer des moyennes mobiles qui ne représentent pas la réalité statistique : seule la moyenne représente une réalité, et si en prenant la moyenne de toutes les 3 ou cinq mesures, l'on diminue l'erreur des mesures résultantes, on diminue aussi hélas le nombre de points mesurés !!! C'est exactement le même phénomène ici : en prenant une moyenne de 30 mesures de 1 seconde, j'ai une mesure bien plus précise... mais je n'ai plus qu'un point (au lieu de 30!).

Pour mieux comprendre ce phénomène, j'ai pratiqué une "Analyse du stochastic error budget" (d'après Bruce Garry)" sur les images acquises dans mon papier:

L’analyse de la provenance de l’erreur de mesure entre 2 sec, 9x2sec et 30x2sec est intéressante :

Sur une seule image de 2 secondes, l’erreur vient essentiellement de l’ouverture, elle même provenant essentiellement de la fluctuation du ciel (voir résultats ci-dessous)

5bf5c96f1768c_Capturedcran2018-11-2122_08_05.png.edb8c50638e23423801edc35ba9ae4fb.png

Sur 9 images de 2 secondes, soit un temps d’intégration de 18 secondes, l’erreur sur le ciel est comparable à l’erreur due à la distribution de type Poisson, mais c’est la scintillation qui devient dominante. 

Sur 30 images de 2 secondes, l’erreur due la la loi de Poisson devient prépondérante par rapport à l'erreur d'ouverture (tout en restant très faible), mais l’erreur due à la scintillation baisse aussi fortement (car cette erreur est proportionnelle à 1 / SQRT (exposure time) tout en devenant prépondérante par rapport aux deux autres.

Au delà, la précision n'augmente plus car c'est l'erreur d'arrondi du fait de la conversion AD sur 12 bits ( soit 1/4096) qui devient prépondérante! (non prise en compte ci dessus) 

Il faut noter aussi une grande concordance entre la théorie et les mesures réelles en termes d’écart type (sauf dans le premier cas, qui reste à investiguer)

J'insiste sur le fait que les écarts types sont des écarts mesurés avec les données acquises, ce qui consolide clairement l'approche.

En fait, je ne fais pas des mesures de 2 secondes avec la QHY 42 pour me faire plaisir, mais simplement parce qu'elle sature très vite du fait de sa sensibilité et du faible puit d'électrons de chaque pixel lorsque le gain est élevé. 

Mais l'intérêt est bien sûr important car le gain lié à cette sensibilité permet de mesurer avec la même précision des étoiles d'environ 2 magnitudes plus élevées qu'avec la FLI 11002.

Mon télescope est un RILA fast Officina Stellare de 400 mm et F5.3  et la monture, un monture ASA direct drive DM85 plus : c'est vrai que cela aide !

En ce qui concerne le suivi, je suis d'accord complètement sur l'importance théorique de rester sur le même pixel.

Le suivi de mon set up est d'environ 2-3 pixel tous les 30 à 60 secondes selon la position dans le ciel. 

Après de multiples essais de guidage allant du suivi en parallèle (inutile), à un OAG prisme (épuisant et impossible en remote), à la solution ONAG X M d'innovationsforesights (pas mal, mais tout le flux IR va dans la caméra guide et échappe à la mesure !). La solution que je retiens est de pratiquer un recalcul automatique astrométrique du champ (avec PinPoint) et recalage slew du telescope (précis au 2/10 d'arc seconde) (feature standard dans Maxim DL)  et ceci tous les 30 ou 60 secondes. Ceci garantit un suivi entre un et deux pixel près

En fait il y a un peu de marges : le seing étant souvent moyen de 3 arc sec environ soit près de 3 pixels, la mesure va s'effectuer sur un rayon de 10 à 12 pixel et  la moyenne fluctue donc beaucoup mons vite que si l'étoile était sur un pixel (ce qui est absolument à proscrire d'ailleurs) (en revanche il faut absolument éviter tout dead pixel dans les environs !)

Pour les étoiles de comparaison, je prends en général environ une dizaine de comparaisons, et le logiciel que j'ai écris de calcul de la meilleur courbe fittant les mesures optimise le choix et les poids attribués à chaque comparaison. Ceci moyennise aussi beaucoup les erreurs liés au guidage.

Il est intéressant de constater que lorsque le ciel est très dégagé et homogène, le logiciel garde des étoiles de comparaison assez lointaines, alors que lorsque le ciel est de qualité médiocre et surtout changeant, le logiciel ne retient que des étoiles proches (ce qui est intuitif!).

En fait, l'essentiel de l'erreur vient de l'étoile à mesurer et non des étoiles de comparaison (si bien sur celles ci sont correctement choisies !).

Tout cela est bien sûr à consolider par l'expérience, dès que le ciel (pourri depuis 4 mois !!!) voudra bien se dégager avec des mesures concrètes de transits avec la nouvelle caméra  !

Pour info en  annexe, une mesure de HAT P 32b effectuée avec la FLI 11002 en décembre 20175bf5d6cc42e92_RsultatHATP321-2-3-4-12Mean3.thumb.PNG.20c4e355cc59a691c2a2da565a505c32.PNG et dépouillée avec mon logiciel (d'après Ondrej Pejcha - identique au model fitting du site ETD exoplanet mais entièrement ré-écrit en VB )

 

 

 

 

 

 

 

  • Love 1

Share this post


Link to post
Share on other sites

Belle réalisation. Je reste septique sur le temps de pose court (la scintillation ajoute du bruit) et sur le guidage.

 

De ma pratique sur le sujet, les points importants sont:

- Un temps de pose unitaire adapté à ce que l'on veut mesurer (RSB, vitesse pour avoir la courbe de descente/montée du transit)

- Le choix des étoiles de comparaison au niveau des indices de couleurs (le plus proche possible de l'étoile à mesurer)

- Un guidage qui minimise au maximum possible le déplacement du champ

 

Comme tu parles de HAT-P-32 b, j'ai un joli résultat publié sur ETD http://var2.astro.cz/tresca/transit-detail.php?id=1475176846

C'est fait avec un C8 et une SBig ST8-XME et un temps de pose unitaire de 120sec sans filtre

transit_FIT_detail.php?id=1475176846

transit_FIT_residuals.php?id=1475176846

 

 

Je regarderai avec attention tes futurs résultats si tu publies sur ETD.

Marc

 

Share this post


Link to post
Share on other sites
Il y a 9 heures, brno92 a dit :

Pour mieux comprendre ce phénomène, j'ai pratiqué une "Analyse du stochastic error budget" (d'après Bruce Garry)" sur les images acquises dans mon papier:

L’analyse de la provenance de l’erreur de mesure entre 2 sec, 9x2sec et 30x2sec est intéressante :

Sur une seule image de 2 secondes, l’erreur vient essentiellement de l’ouverture, elle même provenant essentiellement de la fluctuation du ciel (voir résultats ci-dessous)

5bf5c96f1768c_Capturedcran2018-11-2122_08_05.png.edb8c50638e23423801edc35ba9ae4fb.png

Sur 9 images de 2 secondes, soit un temps d’intégration de 18 secondes, l’erreur sur le ciel est comparable à l’erreur due à la distribution de type Poisson, mais c’est la scintillation qui devient dominante.  

Sur 30 images de 2 secondes, l’erreur due la la loi de Poisson devient prépondérante par rapport à l'erreur d'ouverture (tout en restant très faible), mais l’erreur due à la scintillation baisse aussi fortement (car cette erreur est proportionnelle à 1 / SQRT (exposure time) tout en devenant prépondérante par rapport aux deux autres.

Au delà, la précision n'augmente plus car c'est l'erreur d'arrondi du fait de la conversion AD sur 12 bits ( soit 1/4096) qui devient prépondérante! (non prise en compte ci dessus) 

Il faut noter aussi une grande concordance entre la théorie et les mesures réelles en termes d’écart type (sauf dans le premier cas, qui reste à investiguer)

 

Tres interessant ce passage. Je ne connaissais pas le livre de Bruce Gary, pour les interesses, j'ai mis une version pdf en lien: PhotometryExoPlanetBruceGary.pdf. Le "Stochastic SE Budget" y est presente page 87. En tout cas on ne peut que saluer les efforts de methodologies mis en place par les amateurs.

Par curiosite, y-en a t-il parmis vous qui ont essaye de faire tourner des algo type MCMC pour trouver des parametres de systemes exoplanetaires ?

 

Edited by DOLGULDUR

Share this post


Link to post
Share on other sites

Pour revenir un peu sur la discussion et à Bruce Gary !

D'abord son livre est une mine d'or à lire et à relire si vous voulez faire de mesures de transit d'exoplanètes !

Celui-ci résume bien la confusion souvent faite entre un temps de pose de n xT et la moyenne de n mesures d'un temps T :

"The only improvement in reducing scintillation by using longer exposures comes

from the fact that a 4-minute exposure can be obtained more quickly than four 1-minute exposures

(due to the difference in number of image downloads). This fact is apparently not appreciated by even

some professional astronomers (two that I know about). This warrants repeating (slightly reworded):

The average of four 1-minute exposures will exhibit the

same level of scintillation as a single 4-minute exposure.

Using the previous example, in which a 4-minute exposure has a 7% advantage in duty cycle

compared to 1-minute exposures, we can calculate that a sequence of 4-minute exposures will have a

3.4% lower scintillation per unit of observing time than the sequence consisting of 1-minute

exposures, due simply to the slight improvement in duty cycle (sqrt(1.07) = 1.034).

The same argument can be applied to Poisson noise (described in Chapter 20). The fractional

uncertainty of a flux measurement due to Poisson noise is proportional to 1/flux1/2 and since flux is

proportional to exposure time the same 1/g1/2 relationship exists between Poisson noise and exposure

time. This leads to the same rule stated above for scintillation:

The average of four 1-minute exposures will exhibit the

same level of Poisson noise as a single 4-minute exposure.

I hope these concepts are clear because they are the basis for a lot of observing strategy formulation.

It has always puzzled me that “information rate” concepts are lacking from all the text books aimed at

amateur astronomers, so I feel the need to compensate for this lack by emphasizing it here."

 

Deuxième sujet sur le thème "l'étoile doit rester sur le même pixel" , qui est de loin une assertion beaucoup trop extrême et cela pour deux raisons :

prenons un FWHM courant de 3.5 arc sec, un set up camera-FL  de 1 arc sec par pixel (ce qui est optimal) : en photométrie d'ouverture, il est important de mesurer une part importante du flux, soit environ 98% pour une précision de quelques mmag. (voir encore Brune Gary pages 69) : ceci correspond à un rayon d'ouverture compris entre 2.5 (pour les téméraires) et 3.5 (pour les prudents, mais on perd en SNR!) fois le FWHM. Dans notre cas, cela correspond donc à une ouverture de 10 ou 12 pixel. Si l'on choisit un rayon de 12 pixel, cela veut dire que l'on mesurera le flux lumineux sur 450 pixel !!! (et non sur un seul, même si les pixels centraux sont plus illuminés que les pixels du bord !). Un variation de quelques pixels n'est donc pas dramatique !

 

Cela m'a donné idée de mesurer concrètement ce qui se passe lorsque l'étoile objet n'est plus centrée sur le même pixel : pour cela j'ai pris un flat au hasard et je l'ai calibré, comme j'aurai calibré ma mesure, c'est à dire en y incluant un master flat. Puis j'ai mesuré le flux moyen de l'ouverture (12 pixels) aux quatre points cardinaux décalés de deux pixels.

5bf67cadd93bc_ImagedunFlatcalibr.png.08e39962e2028161aa4790ebd60ea581.png

 

Résultats :

5bf67ce9600be_Rsultatmesuresau4pointscardinaux.png.05940b9bd11947cf12b31474123e0d0c.png

Résultat une erreur de 0,64 mmag ! quasi négligeable donc !

Au vu de cela, je me suis dit que se passe-t-il si je décale de 24 pixel, soit le double du rayon d'ouverture (c'est à dire en fait si mon étoile objet se trouve avoir shifté un peu n'importe où !!)

Résultat une erreur de 2,4 mmag : ce n'est plus négligeable mais pas forcément majeur vis à vis d'autres paramètres comme le bruit du ciel ou encore la variabilité de celui-ci ou encore  la scintillation. 

En conclusion, maintenir le centre de  l'étoile cible à 2-3 pixels suffit amplement pour des mesures de qualité.

 

Share this post


Link to post
Share on other sites

Au sujet de la modélisation du transit, j'ai bien sur commencé avec les feuilles Excel de Bruce Gary, et j'ai beaucoup ramé !! Ensuite, j'ai fait pendant longtemps un pré-traitement assez simple en Excel avant de procéder à une simulation avec le site ETD. L'ennui, c'est que dès que vous voulez voir l'impact de prendre tel ou tel jeu d'étoiles de référence, que vous voulez voir l'impact du rayon d'ouverture, du temps de pose (en moyennant) cela devient très vite fastidieux !! En plus, le site n'est pas complètement à jour par rapport au site de la NASA sur les candidats et leurs paramètres. D'où l'idée d'écrire un software complet correspondant à mes besoins, et en local  !!!

Aujourd'hui, je m'en sers systématiquement et je n'envoie les mesures à ETD que pour publication finale.

Si le jeu vous tente, soit je vous donne une copie de mon logiciel (avec strictement aucune garantie !!)

soit je vous donne quelques références documentaires qui permettent de gagner beaucoup de temps :

- FitProcedureDescription-Pejcha2008 : c'est algorithme utilisé par ETD lien :

http://var2.astro.cz/ETD/FitProcedureDescription-Pejcha2008.pdf

- Mandel & Agol, Transit Light Curves : modélisation du transit (utilisé dans Pejcha) lien :

http://iopscience.iop.org/article/10.1086/345520/fulltext/16756.text.html

- Detection and characterization of extrasolar planets: the transit method (Claire Moutou1 and Frédéric Pont2)

http://sf2a.eu/goutelas/2005/chap03-moutou.pdf

- Pour l'algorithme de régression non linéaire  (Gauss Newton)

https://fr.wikipedia.org/wiki/Algorithme_de_Gauss-Newton

- Et pour les bibliothèque matricielles (pratique !! déjà écrit en VB) :

https://codes-sources.commentcamarche.net/source/44258-inversion-de-matrice-resolution-de-systemes-d-equations-lineaires

 

Voici quelques exemples d'utilisation :

Choix d'un candidat à partir du catalogue de la NASA (téléchargeable dans l'application)

5bf6ce77a3b75_Capturedcran2018-11-2216_35_40.png.30e8eb266cd94135e86b54cef434f691.png

 

Mesures moyennisées à partir d'un fichier en sortie de MaximDL :

5bf6cf1bda408_Capturedcran2018-11-2216_37_28.png.1f9e4eb39a189441d12c7d20f6c16aa3.png

 

Affichage des mesures brutes de toutes les étoiles (objet et checks) (permet d'identifier des points aberrants)

5bf6cf86a75ef_Capturedcran2018-11-2216_39_53.png.13dce3cc6460c1a9e5d24be08ad7b2a0.png

 

Et enfin et surtout, la réduction des données sur le modèle de transit :

5bf6cfd340f76_Capturedcran2018-11-2216_40_42.png.01fcf3cc30a0db4557b2701806383e25.png

 

et cerise sur le gateau, les prédictions pour un jour donné !! 

5bf6d015a8d67_Capturedcran2018-11-2216_41_39.png.377dfd5384f5da24ffcdbb85a905fc74.png

 

 

  • Like 1

Share this post


Link to post
Share on other sites

Cela a l'air d'un super travail, bravo.

 

Pour revenir au guidage, 1 pixel voire 2 ou 3, je pense qu'on est pas mal.

Avec ta monture, quand tu dois recentrer, tu arrives à repositionner le champ à 2 ou 3 pixels prêt ?

 

Marc

Share this post


Link to post
Share on other sites

En fait cela dépend plus de la précision de l'analyse astrométrique de PinPoint (en général 0.2 pixel pour  la plaque, soit 0.3 - 0.5 pour le centre) que de la précision de la monture qui est de l'ordre aussi de 0.2-0.3 sec pour un recalage 

En fait je suis toujours en dessous du pixel, pour le recalage lui-même.

Mais avant de recentrer, la monture a pu se décaler de 2-3 pixel sur une durée de 30 - 60 secondes.

Avec des images toutes les 2 secondes, je recale tous les 15 images, ce qui est largement suffisant.

L'amélioration pourrait venir de Maxim DL lui-même : le calage astrométrique prends du temps et n'est pas toujours opérationnel (parfois, il ne trouve pas la position du tout!) et du coup à moins d'avoir l'oeil rivé sur les mesures (c'est pas mon truc!!) la manip s'arrête !! et il faut relancer à la main!

L'idéal serait pouvoir choisir l'algo de rentrage notamment "astro star matching" (comme c'est possible dans la fonction stack!) et non systématiquement "astrometric" : cela serait d'une précision équivalente voire meilleure, beaucoup plus rapide et beaucoup plus fiable. Je n'ai jamais eu le temps de leur passer le message !

Je ne sais pas du tout ce que donnerait cette méthode avec une monture moins performante, mais au départ j'ai eu une monture EQ6 avec un interface ASCOM (un très grand merci au passage à l'équipe qui a développé EQASCOM, multipliant les qualités de cette monture assez bon marché !)  et j'ai été très surpris de la qualité de cette monture à partir du moment où elle était pilotée par Maxim DL y compris en recentrage.

C'était sans doute pas au pixel près mais pas très loin !

 

Share this post


Link to post
Share on other sites

@Gribol 

Encore un commentaire à propos de la phrase :

"- Le choix des étoiles de comparaison au niveau des indices de couleurs (le plus proche possible de l'étoile à mesurer)"

C'est ce que dit la théorie et notamment Bruce dans son livre en expliquant très bien pourquoi !!! (le bleu absorbe plus que le rouge lorsque la masse d'air augmente; c'est pourquoi il a fait construire un filtre dit CBB qui coupe les bleus mais laisse passer les infra rouges moins sensibles à l'absorption atmosphérique et permettant en plus  de récupérer beaucoup de flux si votre caméra le permet !! Et la QHY 42 est très sensible dans l'infra rouge ;)))

Mais la réalité est plus complexe (comme toujours)  ! Si le transit est court et si la masse d'air faible (1.0 - 1.2) la différence de couleur joue très peu : si vous avez la chance d'avoir une étoile check assez proche, un peu plus lumineuse que l'objet, de couleur pas trop différente, n'hésitez pas.

Dans mon logiciel qui optimise le poids des étoiles de comparaison, les résultas sont parfois surprenants !! Souvent une étoile qui a tout pour être un bon candidat  (proche, même couleur, un peu plus lumineuse) s'avère une catastrophe dans la régression (en clair, si vous l'éliminer, l'écart type s'améliore brutalement t) . Parfois pas d'explication, mais souvent : c'est une étoile double (pas très visible) et donc un shift d'un pixel aura une influence très forte sur le flux, et encore plus souvent il y a un bad pixel (soit dedans soit à proximité).

A ce propos, je conseille vivement avant de commencer une série de mesures de décaler un tout petit peu le télescope et de bien regarder s'il n'y a pas de bad pixel à l'endroit du l'objet à mesurer. En effet, si c'est le cas, toutes les mesures seront inutilisables !!!

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now