jldauvergne

Est ce que l'on perd en résolution avec une matrice de bayer ?

Recommended Posts

il y a 1 minute, lyl a dit :

Le bayer drizzle fonctionne car on a une information commune entre les canaux B et G ainsi que G et R, c'est l'entropie conjointe due au recouvrement des filtres

J'ai l'impression que tu n'as compris cette notion de Bayer Drizzle.
Je ne vois pas ce que l'entropie vient faire ici, elle se fait manger à toutes les sauces dans ce fil. L'entropie conjointe encore moins (surtout que cette notion porte sur 2 variables aléatoires non liées). Si possible ce serait bien d'arrêter avec ce concept droping, à moins de l' étayer, l'expliquer, le justifier et l'argumenté, que l'on voit si c'est pertinent et que l'on apprenne quelque chose le cas échéant, car là ça n'apporte rien à la discussion je trouve.


Le bayer drizzle tel que je le comprends c'est recaler les images entre elles sans dbayeriser, du coup à l'arrivée, aléatoirement en chaque point de l'image, on a eu tantôt le filtre v, tantôt le b et tantôt le r. Un peu comme si dans chaque couche les pixels se remplissent petit à petit au gré du dithering ou de la turbu. Du coup on reconstruit une vraie information RVB en chaque point, c'est comme si on avait passé un jeu de filtres RVB, sauf que l'information verte est 2 fois plus qualitative que B ou R. Si au lieu d'avoir une matrice RVB on avait une matrice SHO ça fonctionnerait également. 

 

Share this post


Link to post
Share on other sites
Publicité
En vous inscrivant sur Astrosurf,
ce type d'annonce ne sera plus affiché.
Photographier la Lune
Guide complet pour la photographier de la Lune.
Information et commande sur www.photographierlalune.com
il y a 28 minutes, jldauvergne a dit :

J'ai l'impression que tu n'as compris cette notion de Bayer Drizzle.
Je ne vois pas ce que l'entropie vient faire ici, elle se fait manger à toutes les sauces dans ce fil. L'entropie conjointe encore moins (surtout que cette notion porte sur 2 variables aléatoires non liées). Si possible ce serait bien d'arrêter avec ce concept droping, à moins de l' étayer, l'expliquer, le justifier et l'argumenté, que l'on voit si c'est pertinent et que l'on apprenne quelque chose le cas échéant, car là ça n'apporte rien à la discussion je trouve.

 

L'expertise en traitement du signal et traitement de l'information c'est mon domaine.

Si tu ne veux faire aucun effort à lire les références minimales (souvent simple wikipedia) que je mets, j'en suis désolée pour toi par ce que c'est le concept qui a servi de base à la création de ces techniques comme le bayer drizzle qui a été créée pour Hubble.

Myriam

ing en micro-électronique et traitement du signal

master en technologie de l'information, INT France Telecom.

ancien conseil en technique de compression de données pour la Maison de la Radio.

ayant participé au test du codec HEVC.

Edited by lyl

Share this post


Link to post
Share on other sites
il y a 5 minutes, lyl a dit :

Si tu ne veux faire aucun effort à lire les références minimales (souvent simple wikipedia) que je mets, j'en suis désolée pour toi par ce que c'est le concept qui a servi de base à la création de ces techniques comme le bayer drizzle qui a été créée pour Hubble.

dans ton dernier message point de référence. Mais quand j'en cherche une je vois que ça n'a pas grand chose à voir avec ce que tu dis (entropie conjointe et recouvrement de 2 filtres bayer).
Hubble ne fait pas du bayer-drizzle, mais du drizzle simple. Ce n'est juste pas la même chose. 
Je veux bien que le traitement de l'information soit ton domaine, c'est super, bravo. Mais au bout de 3 pages, seul @Philippe Bernhard a apporté une réponse précise par rapport à ma question de départ, qui était de savoir ce que le stacking apporte lorsqu'il y a 30% de différente en résolution entre les images brutes n&b et bayer. L'énoncé est simple. 
Bref on va pas se fâcher, mais si on pouvait rester dans le sujet avec des apports concrets plutôt que des digression théoriques qui n'ont pas de lien direct avec le sujet, ce serait bien. Ça peut éviter à terme que la réponse soit noyée dans une avalanche de digressions et de hors sujet (c'est juste mon point de vu, après chacun reste libre de poster ce qu'il veut). 

Share this post


Link to post
Share on other sites
il y a 30 minutes, jldauvergne a dit :

Mais au bout de 3 pages, seul @Philippe Bernhard a apporté une réponse précise par rapport à ma question de départ

C'est faux, tu ne l'as pas lu ou pas compris et j'ai indiqué la méthode avant Philippe.

Vert : demi flux, -3dB de perte sur la qualité du signal (à minima)

Bleu : quart de flux, -6dB de perte à minima

Rouge : quart de flux, -6db de perte à minima

à compter : le type d'image à traiter => sa répartition en fréquence, j'ai donné à titre indicatif un spectre de Jupiter que tu affectionnes et des courbes de QE de capteurs. Ça sert pour déterminer l'efficacité de chaque couleur.

à compter en plus (c'est à dire dans le sens positif), l'entropie conjointe des couleurs, c'est à dire par exemple la quantité d'information dont le signal rouge dispose pour complémenter l'information du vert.

Edited by lyl

Share this post


Link to post
Share on other sites

Maintenant, l'explication de l'information extraite par le drizzle : sur un pixel bayerisé (RGGB) on est en sous-échantillonnage par rapport au N&B (4 pixels N&B pour 1 pixel bayer)

c'est le principe expliqué dans la méthode de Fruchter & Hook pour Hubble.

Récupérer/reconstituer l'information non-partagée du Rouge vers le Vert (je reste dans cet exemple partiel)  pour reconstituer un sub-photosite vert sur la position du photosite rouge.

Share this post


Link to post
Share on other sites
il y a 12 minutes, lyl a dit :

C'est faux, tu ne l'as pas lu ou pas compris et j'ai indiqué la méthode avant Philippe.

Tu parlais de flux, pas de résolution alors que ma question portait bien sur la résolution, donc non tu n'as pas du tout parlé de la méthode bayer-drizzle. Pour savoir que l'on est efficace à 1/2 dans le vert et 1/4 en B et R je n'ai pas besoin d'aide. Tes conversions en db ne sont pas bonnes en passant c'est -6db en v et 12 db en B et R. 

Tu peux parler d'information conjointe ou de recoupement d'information pour les filtres de bayer qui se chevauchent, pas de soucis. Mais ce n'est n'a rien à voir avec de l'entropie conjointe, ... Au contraire l'entropie conjointe fait référence à la quantité d'information de 2 variables aléatoires (et donc sans interdépendance l'une avec l'autre). 

Share this post


Link to post
Share on other sites
il y a 3 minutes, jldauvergne a dit :

l'entropie conjointe, ... Au contraire l'entropie conjointe fait référence à la quantité d'information de 2 variables aléatoires (et donc sans interdépendance l'une avec l'autre). 

En traitement de l'information : bien sûr que si, il y a interdépendance par le biais du chevauchement de la bande passante.

c'est conjoint ... parce qu'il y a partage

Share this post


Link to post
Share on other sites
il y a 21 minutes, lyl a dit :

Maintenant, l'explication de l'information extraite par le drizzle : sur un pixel bayerisé (RGGB) on est en sous-échantillonnage par rapport au N&B (4 pixels N&B pour 1 pixel bayer)

c'est le principe expliqué dans la méthode de Fruchter & Hook pour Hubble.

Et non toujours pas. Le drizzle à la Hubble vise vraiment à augmenter la résolution de l'image en nombre de pixel (mais aussi en résolution spatiale en cas de sous échantillonnage). Le principe est très simple en fait, selon qu'une étoile se forme centrée sur un pixel ou à cheval entre deux, la réponse du capteur n'est pas la même et ces deux informations permettent de retrouver proprement l'information à une échelle plus petite que l'échantillonnage de départ. On va typiquement augmenter la résolution de l'image x2 comme ça. 
En bayer drizzle si l'image faisait 1 millions de pixels au départ, elle fait toujours 1 millions de pixels à l'arrivée. L'opération vise juste à compenser la perte de 30% que l'on a avec les algo classiques de dématrissage  par rapport à du monochrome. Ce n'est juste pas le même algo. Après il est probablement possible de cumuler les 2 algo si on a beaucoup de signal, pour aller au delà de l'échantillonnage de la matrice de bayer. 

Edited by jldauvergne

Share this post


Link to post
Share on other sites
il y a 6 minutes, lyl a dit :

c'est conjoint ... parce qu'il y a partage

Tu confonds la définition du mot conjoint dans le dico et celle en science. Là le mot conjoint désigne le fait de considérer l'entropie sur un ensemble de 2 variables, point barre. Rien à voir avec une intrication des deux variables.

Edited by jldauvergne

Share this post


Link to post
Share on other sites
il y a 6 minutes, jldauvergne a dit :

Le drizzle à la Hubble vise vraiment à augmenter la résolution de l'image en nombre de pixel (mais aussi en résolution spatiale en cas de sous échantillonnage).

Le drizzle à la Hubble vient du fait que tu as des instruments figés.

à F/D fixe vs taille de pixel fixe.

 

Dans la conclusion de Fuchter et Hook le principe est :

 

Citation

Drizzle provides a flexible, efficient means of combining dithered data that preserves photometric and astrometric accuracy, obtains optimal signal-to-noise ratio, and approaches the best resolution that can be obtained through linear reconstruction.

 

L'implémentation technique du bayer drizzle cible le même objectif.

 

Quand tu n'as pas moyen de choisir le meilleur f/D en fonction des conditions de capture (temps d'exposition, turbulence)

=> tu peux jouer avec le Bayer Drizzle pour profiter du S/B restant pour extraire un peu plus d'information en sub-pixelisant.

 

L'implémentation technique ne m'intéresse pas (j'ai pas le temps pour ça), on peut faire confiance à la pertinence de l'algorithme choisi pour ça.

Share this post


Link to post
Share on other sites
il y a 8 minutes, lyl a dit :

L'implémentation technique du bayer drizzle cible le même objectif.

Tu ne peux pas juste extraire une phrase d'un corpus pour dire que c'est pareil :) Le drizzle est défini par ce corpus en entier et non par un de ses fragments. 
De surcroît, comme l'a souligné Philippe, le bayer drizzle n'est pas la méthode qui permet d'obtenir the "optimal signal-to-noise ratio". Donc ça ne colle pas avec cette définition très générale.

Share this post


Link to post
Share on other sites
il y a 35 minutes, lyl a dit :

Le drizzle à la Hubble vient du fait que tu as des instruments figés.

à F/D fixe vs taille de pixel fixe.

Je ne comprends pas ce que tu entends par instrument figé, il y a plusieurs instruments sur le télescope et ça a évolué dans le temps. 
Le drizzle à la Hubble vient surtout de l'absence d'atmosphère et surtout du fort sous échantillonnage du télescope. 
Il est à 0,04"/pixel (sur le canal UVIS, c'est moins en IR avec 0,13), donc en gros un facteur 2 en dessous de la règle de Shannon. C'est juste 2 x plus fin en échantillonnage que ce que je mets sur mon télescope alors que Hubble est 10x plus gros. De mon côté je pousse un peu haut, mais Hubble est franchement bas.

Edited by jldauvergne

Share this post


Link to post
Share on other sites

Si je puis emmètre mon avis sur le sujet :

L'échantillonnage à l'acquisition est la base du problème, il faut que l'information de la PSF soit dans l'image résultante sans trop sur-échantillonner.

Je ne connaissais pas le bayer-drizzle, j'ai donc regardé et effectivement c'est un plus en visuel sur l'image résultante en CP,  les étoiles ont un bord plus propre en trichromie (elle sont plus "blanche" jusqu'au bord).

Mais les lois de l'optique montre que le diamètre de la PSF est proportionnel à la longueur d'onde. Donc il est logique que le rouge déborde du disque vert ou jaune et le bleu à l'intérieur. Ce n'est donc pas une aberration chromatique, pour moi au contraire c'est le garant d'une bonne image HR couleur.

Le  bayer-drizzle supprime ce phénomène. Ce type de traitement dénaturerait l'image en HR planétaire ? C'est une question que légitiment on peut se poser.

 

La caméra NB avec 3 séquences avec filtres RVB multiplie par 3 le temps total d'exposition. Hors on est limité par la rotation de la planète même avec une dérotation avec WinJPOS.

Reste le prisme des tri-CCD avec 3 caméras simultanées. Le prix et l'informatique doivent suivre ...

Dans tous les cas la PSF rouge reste plus grande que pour les autres couleurs et la bleu reste la plus petite.

 

Pour une caméra couleur on peut dire que les pixels rouge ou bleu sont de 1 sur 4, soit 25% par rapport à une caméra NB. Pour une QHY 5L-II c entre le vert et le bleu il y a un rapport de longueur d'onde 460/550 = 0.83.  Si K = 5 pour le NB on obtient un équivalent de K = 5*0.83*25% = 1.04

Pour le rouge on passe à 610/550 = 1.11,   K devient 5*1.11*25% = 1.13

Pour le vert K devient 5*1*50% = 2.5

Ce type de calcul donne l'échantillonnage réel par rapport à un échantillonnage NB du tableau K.

On peut trouver le bon échantillonnage pour qu'une caméra couleur corresponde à l'échantillonnage NB choisi, donc son équivalent en résolution.

Il reste toujours les limites du nombre d'images/s fonction du rapport signal/bruit et intensité objet/sensibilité caméra au travers du télescope.

 

Après au final après les post traitements, si l'image avec la caméra couleur semble trop grande (comme floue), il reste toujours la possibilité de la réduire par division géométrique (ou bining) pour lui attribuer une résolution proche du pixels améliorant seulement la restitution visuelle et sans ce que certains appellent les aberrations chromatiques, l'essentiel c'est que l'information HR soit dans le cumul des images et restituée au final  tout en correspondant au limites du télescope.

 

PS mon meilleur résultat obtenu en de-bayerisation est l’algorithme IVG de RawTherapee . Mais je ne sais pas à quoi il correspond.

 

  • Like 1

Share this post


Link to post
Share on other sites

Bonsoir,

 

Attention au Drizzle,. Il ne faudrait pas le considérer comme le Graal du traitement d'images.

Dans la doc de Prism il y a un bon résumé des conditions  indispensables pour que le Drizzle soit efficace ;

( sinon il ne fera pas mieux que des algo plus classiques )

 

------------------------------------------------

But : Addition d'images sous-échantillonnées par la technique du drizzle. La résolution de l'image résultante sera alors artificiellement meilleure que chacune des N images de départ, décalées statistiquement les unes par rapport aux autres.

C'est une fonction très puissante, qui consiste à compositer efficacement des images individuelles provenant d'un système optique/détecteur sous-échantillonnant, c'est à dire un système optique/détecteur qui produit des images trop fines parce que la focale est trop courte ou que les pixels sont trop grands.

Le but du Drizziling est d'additionner ces images sans perdre leur résolution initiale en profitant du fait qu'elles sont sous-échantillonnées et en nombre suffisant.

-------------------------------------------------

 

On est rarement dans ce cas de figure en planétaire (solaire ou lunaire) haute-résolution.

Ce peut être plutôt une situation de prise de vue en Ciel-Profond classique.

 

Je pense programmer un Drizzle prochainement, on en reparle...

 

Lucien

Edited by Lucien
  • Like 1

Share this post


Link to post
Share on other sites

C est entendu, c'est ce que j ai précisé plus haut. On ne parle pas de drizzle classique mais de bayer drizzle ce qui est différent.  

Share this post


Link to post
Share on other sites
il y a 30 minutes, Lucien a dit :

Ce peut être plutôt une situation de prise de vue en Ciel-Profond classique.

Oui, je l'avais trouvé implémenté sur Deep Sky Stacker, j'expérimentais les réglages à l'époque.

Share this post


Link to post
Share on other sites
il y a 40 minutes, jldauvergne a dit :

bayer drizzle

JLD je crois que tu peux trouvé la réponse tout seul, il te suffit de traiter une de tes vidéos couleur avec ta méthode de de-bayer classique et le refaire avec le bayer drizzle. Au final tu devrais nous annoncer s'il y a vraiment un plus. ;)

  • Like 1

Share this post


Link to post
Share on other sites
il y a une heure, CPI-Z a dit :

JLD je crois que tu peux trouvé la réponse tout seul, il te suffit de traiter une de tes vidéos couleur avec ta méthode de de-bayer classique et le refaire avec le bayer drizzle. Au final tu devrais nous annoncer s'il y a vraiment un plus.

Pas certain que j'ai du stock mais surtout avec quoi on traite ça ? Pixinsight le fait sur étoile et je ne suis pas utilisateur de ce logiciel, son ergonomie me rebute. Après possible que as3 fasse déjà ça sans qu'on le sache ?

  • Like 1

Share this post


Link to post
Share on other sites

@jldauvergne Jean-Luc, non, si tu dematrices chaque image avant alignement et emplilement et donc à la limite ne faire que du drizzle 2x la résolution ne sera pas bonne.

 

le bayer-drizzle x1 garde vraiment LA résolution du pixel SI et SEULEMENT SI on paramètre l’algorithme pour optimiser la résolution et non le rapport Signal sur bruit. Et ça se démontre assez bien sur une pile de 200 images (A7s ou A7III par exemple) et on peut obtenir les 2 extrêmes.

La perte de S/B est conséquente si on veut la résolution optimale. Il faut beaucoup plus d’images.

 

je suis en plein dessus en ce moment car je teste 2 softs (APP et Pixinsight) sur ce mode bien précis en vue du stage AIP de février. C’est même assez impressionnant de voir l’effet des paramètres sur le résultat. Je connais très (très) bien les 2 softs, donc pas de souci. 

 

Ca devrait fonctionner en planétaire (il n’y a pas de raison que ça merdouille) mais il faut que ça soit géré par le soft, et je ne suis pas sur que les logiciels « planétaires » gèrent ce mode alors qu’en ciel profond, ça existe depuis longtemps (DSS le faisait) mais l’algo s’est vraiment amélioré sous Pixinsight et AstroPixel processor 

 

Edited by Philippe Bernhard
  • Like 3

Share this post


Link to post
Share on other sites
il y a 23 minutes, Philippe Bernhard a dit :

Jean-Luc, non, si tu dematrices chaque image avant alignement et emplilement et donc à la limite ne faire que du drizzle 2x la résolution ne sera pas bonne.

 

le bayer-drizzle x1 garde vraiment LA résolution du pixel SI et SEULEMENT SI on paramètre l’algorithme pour optimiser la résolution et non le rapport Signal sur bruit. Et ça se démontre assez bien sur une pile de 200 images (A7s ou A7III par exemple) et on peut obtenir les 2 extrêmes.

 

ok ça c'est intéressant, je pense que ça répond à ma question de départ. Merci !

AS3 est un sacré soft donc il fait peut être déjà ça, mais je ne suis pas certain. Je vais demander à Emil. 

  • Like 1

Share this post


Link to post
Share on other sites

Très intéressant ce fil malgré les digressions..

Je me demande car j'ai pas vraiment compris en quelle mesure le fait de debayériser les fits ou ser d'une camera couleur en amont puis de stacker fait perdre en résolution.

Il y a aussi l'algo de dématricage qui doit jouer. AstroPixelProcessor possède un algorithme propriétaire qui semble faire gagner quelque chose (moins de bruit chromatique et résolution accrue) par rapport au mode bilinéaire classique : Adaptive Airy Disc.

DSS possède aussi le Bayer Drizzle / AHD / Superpixel : Quelle option choisir ?

Le bayer Drizzle divise la résolution de l'image par 2 (c'est ce qui est noté dans DSS).

 

Edited by olivedob
  • Like 1

Share this post


Link to post
Share on other sites
Il y a 19 heures, lyl a dit :

Tu as raison, je préfère qu'on reste côté chaîne optique, c'est le sujet, la numérisation dans la caméra n'en a pas besoin, le DAC n'utilise pas le filtre.

 

le filtre d'entrée est côté optique justement, soit un filtre de luminance, soir Ir cut, soit la lentille elle même ou le coating du miroir, le tout est de savoir à  quelle longueur d'onde ça coupe pour échantillonner plus de 2 fois plus serré avec un peu de marge pour éviter les repliement de spectre.

 

Mais sur quel critère ? car le pouvoir de résolution est toujours basé sur un critère plus ou moins empirique signifiant qu'on arrive à séparer 2 étoiles de même magnitude i.e. avec même figure d'Airy...

 

En pratique ça marche quand même pas mal du tout en prenant la limite de diffraction ou le critère de Dawes avec 15% de marge. Ça c'est le minimum vital pour ne pas être en sous échantillonnage.

Pour me rappeler facilement de l'échantillonnage mini sur le terrain, j'ai adopté une formule hyper simple :

 

e<= lamda / 10d

 

filtre de luminance : lambda = 400nm

D = 200mm par ex 

 

e <= 0,2 " 

 

ca c'est pour du monochrome.

 

Avec un capteur couleur on va devoir serrer un peu plus. d'expérience je sais que je gagne encore avec la 224 à pixel de 3,75 jusqu'à f/D 28 environ, mais avec une optique de course comme dis Jean Luc ci dessus.

 

Il y a 20 heures, patry a dit :

Hors une étoile (non résolue) et à distance respectueuse de l'artefact de la figure d'airy, est assez représentative de la fonction de dirac : un fond à zéro (le ciel) et une étoile qui fournit toute son énergie sur un unique pixel du détecteur.

 

heu...une étoile dans un télescope c'est la figure d'Airy. C'est ça le vrai signal à reproduire fidèlement en sortie par un échantillonnage suffisamment serré.

 

C'est toujours non résolu en optique (à part Betelgeuse et ses copines au VLT par interférométrie).

 

En planétaire (que tu connais bien) on essaie justement d'échantillonner suffisamment serré pour reproduire fidèlement ce que "voit" le télescope et profiter de son pouvoir séparateur au mieux. 

Transformer la figure d'Airy en diract, c'est un grave sous échantillonnage ou autre (filtre passe haut), en tout cas le signal de sortie n'a plus rien à voir avec l'entrée.

On peut pas dire qu'une étoile dans un télescope c'est un dirac, c'est justement le contraire : le télescope est incapable de reproduire un dirac à cause de la diffraction due au diamètre fini du télescope qui résulte en la figure d'Airy.

Mais tout ça on connaît tous vue qu'on s'acharne avec nos barlow pour trouver le bon échantillonnage en planétaire.

Edited by olivdeso

Share this post


Link to post
Share on other sites
Il y a 6 heures, olivedob a dit :

AstroPixelProcessor possède un algorithme propriétaire qui semble faire gagner quelque chose (moins de bruit chromatique et résolution accrue) par rapport au mode bilinéaire classique : Adaptive Airy Disc.

DSS possède aussi le Bayer Drizzle / AHD / Superpixel : Quelle option choisir ?

Le bayer Drizzle divise la résolution de l'image par 2 (c'est ce qui est noté dans DSS).

 

Il y a 2 passes dans le bayer-drizzle :

1) on dématrice chaque image, on aligne, on empile en methode classique mais on note les paramètres d’alignement et d’empilement de chaque image. 

2) on repart de la brute calibrée N&B et on calcule le drizzle en appliquant les paramètres de chaque image. Mais on ajuste les paramètres de l’algo pour optimiser soit la résolution soit le S/B.

 

Donc, non, la résolution n’est pas divisée par 2 sauf peut-être sur DSS qui n’a AUCUN réglage de l’algorithme.

C’est très bien expliqué sur APP et Pixinsight 

Par contre, APP conseille entre 2 et 2.5 en top hat (de memoire, je n’ai pas le pc sous les yeux) ce qui donne un compromis trop doux pour moi. Je suis plutôt autour de 1.25 ou 1.5 pour mon compromis perso.

Sous pixinsight, les paramètres sont différents mais au final il y a l’embarras du choix, Les 2 logiciels offrent vraiment toutes les possibilités pour obtenir ce que l’on veut mais certaines options nécessitent un très grand nombre d’images et un dithering plus large 

 

 

  • Like 2

Share this post


Link to post
Share on other sites
Il y a 6 heures, olivdeso a dit :

d'expérience je sais que je gagne encore avec la 224 à pixel de 3,75 jusqu'à f/D 28 environ,

Ce qui n'est pas loin de la règle que tu donnes augmentée de 30% de perte sur la matrice de bayer. On obtient en suivant cette logique f/25. Je suis proche de cette valeur f/24 et je peux affirmer que c'est insuffisant les bons soirs, ça recoupe ce que tu dis, à f/28. 

 

Il y a 6 heures, olivdeso a dit :

e<= lamda / 10d

Du coup il faut suivre cette logique comme règle de base et on peut se dire que l'on ajoute 10% de marge qui ne seront pas de trop les bons soirs et si on sait que l'on a une très bonne optique. 
Sur mon montage je reste un peu au dessus de ça dans la pratique avec e=L/16d à 400 nm. Mais bon, c'est aussi un compromis entre les deux capteurs que j'utilise d'une part, les contraintes du montage avec ADC, et d'autre part en grand fou je vise plutôt L=350 nm (dans la pratique je sais que je n'ai pas encore réussi à franchir le mur des 400 nm en résolution mais je ne m'avoue pas vaincu :) ). Je ne vais pas changer de montage en tout cas, en début de train optique il y a la barlow Clavé qu'utilisait notre très regretté Gérard dans les années 90.

Share this post


Link to post
Share on other sites

Jean luc, le mieux ne serait il pas de revenir aux sources ?

Sous IRIS (je connais moins ISIS mais ca doit marcher aussi), tu sépare ton flux en un tripler de flux R, G et B (commande split_rgb de mémoire). De là tu traite (en drizzle si tu veux ce serait bien) chaque plan (attention tu aura des résolutions différentes en RB et en G, donc il faudrait limiter le drizzle de la couche verte) et tu recombine le tout à la fin. Cela devrait bien donner le même résultat que le bayer drizzle et avec un peu d'analyse en déduire ce qui est fait dans d'autres softs (ou pas fait plutôt).

Comme il est acquis qu'en couleur on a un plus grand espacement entre les photosites, le drizzle est une bonne solution pour  combler ce manque et faire ce qu'un capteur mono obtient tout naturellement.

 

Il y a 6 heures, olivdeso a dit :

En planétaire (que tu connais bien) on essaie justement d'échantillonner suffisamment serré pour reproduire fidèlement ce que "voit" le télescope et profiter de son pouvoir séparateur au mieux. 

Transformer la figure d'Airy en diract, c'est un grave sous échantillonnage ou autre (filtre passe haut), en tout cas le signal de sortie n'a plus rien à voir avec l'entrée.

 

Je comprends ce que tu dis, mais à la base, le télescope ne "voit" pas une figure d'airy, c'est le fruit de sa fonction de transfert (sinon, tous les instruments verraient la même chose) depuis le dirac. Et le dirac c'est l'asymptote de ce que tu veux obtenir non ?

Si j'ai écrit que je transformait la figure d'airy en dirac c'est une maladresse de ma part.

 

Marc

 

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

    • By ZeMrHyde
      Bonjour,
       
      Bien qu'il y ait moults topics sur les forums US/UK, est ce qu'il y aurait des utilisateurs FR qui auraient tenté l'aventure, notamment en imagerie planétaire "HR", avec ces tubes Cassegrain en 6" ou 8" ? 
      J'ai joué de la fonction recherche mais je n'ai rien trouvé de probant ici  
      J'ai compris qu'ils étaient fabriqués par GSO et redistribués sous diverses marques comme Kepler, TS-Optics, Orion, Omegon, etc...
      Pourquoi on en voit pas tant que ça ? tubes trop récents encore ? la mécanique perfectible et la collimation ardue ? l'optique bof bof ? 
      Ils se placent comment face à la concurrence ? Je pense pour le 6", les mak150, C6, et pour le 8", les C8, Vixen VMC, voire mak180
      Oui un mewlon180 (ou +) fera toujours mieux, mais c'est pas le même budget  
       
      Je vous avouerai que dans un coin de ma tête, ils me semblent être une option intéressante d'upgrade pour remplacer mon petit mak127 en ayant un budget "serré"  
       
      Des avis et/ou retours sur ces Cassegrains ? 
    • By COM423
      Bonjour,
       
      Je fais encore appels à vos retours d'expérience sur le terrain.
       
      Pour un Newton à F/4 (200 mm ou peut-être 250 mm), quel correcteur de coma est le meilleur :
      Correcteur de coma GPU pour Newton F/4 coulant 50,80mm (M48) - Sky-Watcher ? ou Correcteur de coma 0,95x MaxField pour Newton - TS ? autre ?  
      Merci
    • By Chris20
      salut à tous,
       
      je commence par ma session du 22 entre deux orages,j'ai profité d'une éclaircie en croisant les doigts pur le matériel,heureusement le ciel est resté clair juste au dessus d'AFA,il y avait des éclairs tout autour pendant que je shootais.
       
      donc le C9 tente de se défendre,il gonfle le torse,me montre des étoiles parfaites(la veille je vérifiais la collim et je voyais parfaitement le 1er anneaux autour de l’étoile focalisée .....en filmant ) mais la concurrence est vachement rude ces derniers jours,c'est une avalanche de magnifiques images que nous voyons en ce moments.
       
      j'ai gardé deux versions,toutes deux présentées en taille réelle et resize plus petit pour un rendu plus joli,et oui les gros diamètres je les laisse au 300 et 350 .
       
      voici une version suivie de son resize 


       
      puis l'autre 
       
       
       
       
       

       
      petite précision sur le voile polaire,il devient bleu dès qu'on touche légèrement à la saturation donc ce n'est pas volontaire.
       
       
      Pour en revenir au titre regardez ce que j'ai reçu hier 

      oups désolé elle est grosse la photo!
       
       
      en fait l'autre jour Sauveur au détour d'une discussion me dit "tu as vu Damian Peach vend son mewlon ?dommage il est un peu cher."
       
      il m'a envoyé l'annonce ,j'ai réfléchis une petit heure et me suis dit que même à ce prix ça restait moins cher que d'acheter un autre téléscope et la monture qui va avec  et j'ai envoyé un message à Damian.
      très sympa d'ailleurs.
      on a essayé de noyer le poisson avec Sauveur pour faire la surprise mais j'avoue que c’était tentant de le dire avant.
       
      prochaine étape collimation du nouveau tube (j'ai vérifié hier soir ,pas bon).
       
      on a encore de belles soirées astro en perspective avec Sauveur 
       
      Bonne journée.
       
      bon ciel!
       
      Christophe 
       
       
       
       
       
       
       
       
       
    • By COM423
      Bonjour,
       
      Je sais que ce sujet a déjà été abordé et j'ai bien sûr auparavant  fouiné sur le forum et au-delà.
      J'ai eu un Newton comme premier instrument (76/700) il y a fort longtemps à une époque où je ne savais même pas ce qu'était une collimation.
      Puis je suis passé sur des Schmidt-Cassegrain et j'ai fini par franchir le pas, non  sans appréhension et au bout de longues années. Pas si compliqué finalement sur ce type d'instrument, où on intervient juste sur les 3 vis du secondaire et une simple clef Allen suffit !
       
      Si je pense avoir compris les principes de la collimation des Newton, la mise en pratique me semble nettement plus complexe.
      Désolé de mes questions qui paraîtront sans doute naîves pour ceux qui maîtrisent le sujet, mais en matière de collimation de Newton je suis donc un débutant complet...
       
      J'ai du mal à comprendre deux choses :
       
      1/ Dans quel ordre on doit faire les règlages :
      d'abord le primaire ? d'abord le secondaire ? un va-et-vient entre les deux ?  
      2/ Et je suis complètement perdu dans le choix des outils de collimation, il y en a tellement...
      Est_ce juste une affaire de goût personnel, ou bien sont-ils vraiment complémentaires et il les faut tous ?
      Je pense en pratique à ces accesoires :
      collimateur concentrique (https://www.pierro-astro.com/materiel-astronomique/accessoires-astronomie/collimation/collimateur-concentrique-coulant-50,80mm_detail) collimateur laser (https://www.pierro-astro.com/materiel-astronomique/accessoires-astronomie/collimation/collimateur-laser-hotech-1,25-sca-avec-centrage-parfait-faisceau-en-croix_detail) collimateur Chesshire (https://www.pierro-astro.com/materiel-astronomique/accessoires-astronomie/collimation/collimateur-cheshire-pour-télescope-newton-sky-watcher_detail) et je ne vais  pas jusqu'aux des étoiles artificielles plus dédiées je suppose à la collimation pour la HR planétaire (?)
       
      S'équiper de tous ces accessoires représente un budget conséquent, je cherche donc à comprendre l'intérêt de chacun, mais j'ai du mal.
       
      Un grand merci d'avance à ceux qui maîtrisent le sujet s'ils peuvent m'aider en termes simples à éclaircir tout çà.
      Bon ciel à tous,
    • By Jamededij
      Bonjour a tous,
      Il y a quelques temps je me suis lancé dans la collimation de mon C9 Evolution.
      au début tout se passait plutôt bien puis petit a petit en observant les empilages réalises pendant une séance , j'ai observé un drôle de défaut reliant l'ombre du secondaire au bord supérieur des anneaux.
      Puis j'ai remarqué que ce défaut avait son inverse en bas mais qui se présente différemment , plus sombre , plus évasé  (plus diffus aussi ?).
      Après quelques recherches , j'ai pensé a une veine de chaleur émanant du baffle interne qui dissiperais soit sa chaleur , soit celle du primaire ! 
      Mais le lendemain , pareil , même défaut et ce malgré une mise en température de 4 heures !
      Je ne suis resté dé-focalisé que d'un tiers ( extra et intra ) car la turbu m’empêchais de tater a la phase 2 de la colim selon Thierry L. , pape es collimation et astrophoto lol !
      Ce défaut apparais dans la verticale de l'instrument et ne bouge pas pendant une rotation de l'oculaire.
      Sur une compo Photoshop on peut voir que j'ai placé les anneaux aux 4 coins du capteur et au centre ; on voit le defaut mais pour le reste ..... la turbu et l'empilage des séquences ( a l'arrache) font qu'a part le défaut , le reste n'est pas très parlant.
      Je suis donc perplexe voir inquiet  car je me met a penser a un décentrement de l'ensemble Lame de shmidt / secondaire , ou autre connerie ....
      J'en appel donc aux  grands manitous de la collimation sur les cassegrains ( ou autre d'ailleurs) , pour avoir des avis , des pistes de recherche , des méthodes pour identifier le problème !
      Bref , a l'aide ! lol






  • Upcoming Events