jldauvergne

Est ce que l'on perd en résolution avec une matrice de bayer ?

Recommended Posts

il y a 1 minute, lyl a dit :

Le bayer drizzle fonctionne car on a une information commune entre les canaux B et G ainsi que G et R, c'est l'entropie conjointe due au recouvrement des filtres

J'ai l'impression que tu n'as compris cette notion de Bayer Drizzle.
Je ne vois pas ce que l'entropie vient faire ici, elle se fait manger à toutes les sauces dans ce fil. L'entropie conjointe encore moins (surtout que cette notion porte sur 2 variables aléatoires non liées). Si possible ce serait bien d'arrêter avec ce concept droping, à moins de l' étayer, l'expliquer, le justifier et l'argumenté, que l'on voit si c'est pertinent et que l'on apprenne quelque chose le cas échéant, car là ça n'apporte rien à la discussion je trouve.


Le bayer drizzle tel que je le comprends c'est recaler les images entre elles sans dbayeriser, du coup à l'arrivée, aléatoirement en chaque point de l'image, on a eu tantôt le filtre v, tantôt le b et tantôt le r. Un peu comme si dans chaque couche les pixels se remplissent petit à petit au gré du dithering ou de la turbu. Du coup on reconstruit une vraie information RVB en chaque point, c'est comme si on avait passé un jeu de filtres RVB, sauf que l'information verte est 2 fois plus qualitative que B ou R. Si au lieu d'avoir une matrice RVB on avait une matrice SHO ça fonctionnerait également. 

 

Share this post


Link to post
Share on other sites
Publicité
En vous inscrivant sur Astrosurf,
ce type d'annonce ne sera plus affiché.
Photographier la Lune
Guide complet pour la photographier de la Lune.
Information et commande sur www.photographierlalune.com
il y a 28 minutes, jldauvergne a dit :

J'ai l'impression que tu n'as compris cette notion de Bayer Drizzle.
Je ne vois pas ce que l'entropie vient faire ici, elle se fait manger à toutes les sauces dans ce fil. L'entropie conjointe encore moins (surtout que cette notion porte sur 2 variables aléatoires non liées). Si possible ce serait bien d'arrêter avec ce concept droping, à moins de l' étayer, l'expliquer, le justifier et l'argumenté, que l'on voit si c'est pertinent et que l'on apprenne quelque chose le cas échéant, car là ça n'apporte rien à la discussion je trouve.

 

L'expertise en traitement du signal et traitement de l'information c'est mon domaine.

Si tu ne veux faire aucun effort à lire les références minimales (souvent simple wikipedia) que je mets, j'en suis désolée pour toi par ce que c'est le concept qui a servi de base à la création de ces techniques comme le bayer drizzle qui a été créée pour Hubble.

Myriam

ing en micro-électronique et traitement du signal

master en technologie de l'information, INT France Telecom.

ancien conseil en technique de compression de données pour la Maison de la Radio.

ayant participé au test du codec HEVC.

Edited by lyl

Share this post


Link to post
Share on other sites
il y a 5 minutes, lyl a dit :

Si tu ne veux faire aucun effort à lire les références minimales (souvent simple wikipedia) que je mets, j'en suis désolée pour toi par ce que c'est le concept qui a servi de base à la création de ces techniques comme le bayer drizzle qui a été créée pour Hubble.

dans ton dernier message point de référence. Mais quand j'en cherche une je vois que ça n'a pas grand chose à voir avec ce que tu dis (entropie conjointe et recouvrement de 2 filtres bayer).
Hubble ne fait pas du bayer-drizzle, mais du drizzle simple. Ce n'est juste pas la même chose. 
Je veux bien que le traitement de l'information soit ton domaine, c'est super, bravo. Mais au bout de 3 pages, seul @Philippe Bernhard a apporté une réponse précise par rapport à ma question de départ, qui était de savoir ce que le stacking apporte lorsqu'il y a 30% de différente en résolution entre les images brutes n&b et bayer. L'énoncé est simple. 
Bref on va pas se fâcher, mais si on pouvait rester dans le sujet avec des apports concrets plutôt que des digression théoriques qui n'ont pas de lien direct avec le sujet, ce serait bien. Ça peut éviter à terme que la réponse soit noyée dans une avalanche de digressions et de hors sujet (c'est juste mon point de vu, après chacun reste libre de poster ce qu'il veut). 

Share this post


Link to post
Share on other sites
il y a 30 minutes, jldauvergne a dit :

Mais au bout de 3 pages, seul @Philippe Bernhard a apporté une réponse précise par rapport à ma question de départ

C'est faux, tu ne l'as pas lu ou pas compris et j'ai indiqué la méthode avant Philippe.

Vert : demi flux, -3dB de perte sur la qualité du signal (à minima)

Bleu : quart de flux, -6dB de perte à minima

Rouge : quart de flux, -6db de perte à minima

à compter : le type d'image à traiter => sa répartition en fréquence, j'ai donné à titre indicatif un spectre de Jupiter que tu affectionnes et des courbes de QE de capteurs. Ça sert pour déterminer l'efficacité de chaque couleur.

à compter en plus (c'est à dire dans le sens positif), l'entropie conjointe des couleurs, c'est à dire par exemple la quantité d'information dont le signal rouge dispose pour complémenter l'information du vert.

Edited by lyl

Share this post


Link to post
Share on other sites

Maintenant, l'explication de l'information extraite par le drizzle : sur un pixel bayerisé (RGGB) on est en sous-échantillonnage par rapport au N&B (4 pixels N&B pour 1 pixel bayer)

c'est le principe expliqué dans la méthode de Fruchter & Hook pour Hubble.

Récupérer/reconstituer l'information non-partagée du Rouge vers le Vert (je reste dans cet exemple partiel)  pour reconstituer un sub-photosite vert sur la position du photosite rouge.

Share this post


Link to post
Share on other sites
il y a 12 minutes, lyl a dit :

C'est faux, tu ne l'as pas lu ou pas compris et j'ai indiqué la méthode avant Philippe.

Tu parlais de flux, pas de résolution alors que ma question portait bien sur la résolution, donc non tu n'as pas du tout parlé de la méthode bayer-drizzle. Pour savoir que l'on est efficace à 1/2 dans le vert et 1/4 en B et R je n'ai pas besoin d'aide. Tes conversions en db ne sont pas bonnes en passant c'est -6db en v et 12 db en B et R. 

Tu peux parler d'information conjointe ou de recoupement d'information pour les filtres de bayer qui se chevauchent, pas de soucis. Mais ce n'est n'a rien à voir avec de l'entropie conjointe, ... Au contraire l'entropie conjointe fait référence à la quantité d'information de 2 variables aléatoires (et donc sans interdépendance l'une avec l'autre). 

Share this post


Link to post
Share on other sites
il y a 3 minutes, jldauvergne a dit :

l'entropie conjointe, ... Au contraire l'entropie conjointe fait référence à la quantité d'information de 2 variables aléatoires (et donc sans interdépendance l'une avec l'autre). 

En traitement de l'information : bien sûr que si, il y a interdépendance par le biais du chevauchement de la bande passante.

c'est conjoint ... parce qu'il y a partage

Share this post


Link to post
Share on other sites
il y a 21 minutes, lyl a dit :

Maintenant, l'explication de l'information extraite par le drizzle : sur un pixel bayerisé (RGGB) on est en sous-échantillonnage par rapport au N&B (4 pixels N&B pour 1 pixel bayer)

c'est le principe expliqué dans la méthode de Fruchter & Hook pour Hubble.

Et non toujours pas. Le drizzle à la Hubble vise vraiment à augmenter la résolution de l'image en nombre de pixel (mais aussi en résolution spatiale en cas de sous échantillonnage). Le principe est très simple en fait, selon qu'une étoile se forme centrée sur un pixel ou à cheval entre deux, la réponse du capteur n'est pas la même et ces deux informations permettent de retrouver proprement l'information à une échelle plus petite que l'échantillonnage de départ. On va typiquement augmenter la résolution de l'image x2 comme ça. 
En bayer drizzle si l'image faisait 1 millions de pixels au départ, elle fait toujours 1 millions de pixels à l'arrivée. L'opération vise juste à compenser la perte de 30% que l'on a avec les algo classiques de dématrissage  par rapport à du monochrome. Ce n'est juste pas le même algo. Après il est probablement possible de cumuler les 2 algo si on a beaucoup de signal, pour aller au delà de l'échantillonnage de la matrice de bayer. 

Edited by jldauvergne

Share this post


Link to post
Share on other sites
il y a 6 minutes, lyl a dit :

c'est conjoint ... parce qu'il y a partage

Tu confonds la définition du mot conjoint dans le dico et celle en science. Là le mot conjoint désigne le fait de considérer l'entropie sur un ensemble de 2 variables, point barre. Rien à voir avec une intrication des deux variables.

Edited by jldauvergne

Share this post


Link to post
Share on other sites
il y a 6 minutes, jldauvergne a dit :

Le drizzle à la Hubble vise vraiment à augmenter la résolution de l'image en nombre de pixel (mais aussi en résolution spatiale en cas de sous échantillonnage).

Le drizzle à la Hubble vient du fait que tu as des instruments figés.

à F/D fixe vs taille de pixel fixe.

 

Dans la conclusion de Fuchter et Hook le principe est :

 

Citation

Drizzle provides a flexible, efficient means of combining dithered data that preserves photometric and astrometric accuracy, obtains optimal signal-to-noise ratio, and approaches the best resolution that can be obtained through linear reconstruction.

 

L'implémentation technique du bayer drizzle cible le même objectif.

 

Quand tu n'as pas moyen de choisir le meilleur f/D en fonction des conditions de capture (temps d'exposition, turbulence)

=> tu peux jouer avec le Bayer Drizzle pour profiter du S/B restant pour extraire un peu plus d'information en sub-pixelisant.

 

L'implémentation technique ne m'intéresse pas (j'ai pas le temps pour ça), on peut faire confiance à la pertinence de l'algorithme choisi pour ça.

Share this post


Link to post
Share on other sites
il y a 8 minutes, lyl a dit :

L'implémentation technique du bayer drizzle cible le même objectif.

Tu ne peux pas juste extraire une phrase d'un corpus pour dire que c'est pareil :) Le drizzle est défini par ce corpus en entier et non par un de ses fragments. 
De surcroît, comme l'a souligné Philippe, le bayer drizzle n'est pas la méthode qui permet d'obtenir the "optimal signal-to-noise ratio". Donc ça ne colle pas avec cette définition très générale.

Share this post


Link to post
Share on other sites
il y a 35 minutes, lyl a dit :

Le drizzle à la Hubble vient du fait que tu as des instruments figés.

à F/D fixe vs taille de pixel fixe.

Je ne comprends pas ce que tu entends par instrument figé, il y a plusieurs instruments sur le télescope et ça a évolué dans le temps. 
Le drizzle à la Hubble vient surtout de l'absence d'atmosphère et surtout du fort sous échantillonnage du télescope. 
Il est à 0,04"/pixel (sur le canal UVIS, c'est moins en IR avec 0,13), donc en gros un facteur 2 en dessous de la règle de Shannon. C'est juste 2 x plus fin en échantillonnage que ce que je mets sur mon télescope alors que Hubble est 10x plus gros. De mon côté je pousse un peu haut, mais Hubble est franchement bas.

Edited by jldauvergne

Share this post


Link to post
Share on other sites

Si je puis emmètre mon avis sur le sujet :

L'échantillonnage à l'acquisition est la base du problème, il faut que l'information de la PSF soit dans l'image résultante sans trop sur-échantillonner.

Je ne connaissais pas le bayer-drizzle, j'ai donc regardé et effectivement c'est un plus en visuel sur l'image résultante en CP,  les étoiles ont un bord plus propre en trichromie (elle sont plus "blanche" jusqu'au bord).

Mais les lois de l'optique montre que le diamètre de la PSF est proportionnel à la longueur d'onde. Donc il est logique que le rouge déborde du disque vert ou jaune et le bleu à l'intérieur. Ce n'est donc pas une aberration chromatique, pour moi au contraire c'est le garant d'une bonne image HR couleur.

Le  bayer-drizzle supprime ce phénomène. Ce type de traitement dénaturerait l'image en HR planétaire ? C'est une question que légitiment on peut se poser.

 

La caméra NB avec 3 séquences avec filtres RVB multiplie par 3 le temps total d'exposition. Hors on est limité par la rotation de la planète même avec une dérotation avec WinJPOS.

Reste le prisme des tri-CCD avec 3 caméras simultanées. Le prix et l'informatique doivent suivre ...

Dans tous les cas la PSF rouge reste plus grande que pour les autres couleurs et la bleu reste la plus petite.

 

Pour une caméra couleur on peut dire que les pixels rouge ou bleu sont de 1 sur 4, soit 25% par rapport à une caméra NB. Pour une QHY 5L-II c entre le vert et le bleu il y a un rapport de longueur d'onde 460/550 = 0.83.  Si K = 5 pour le NB on obtient un équivalent de K = 5*0.83*25% = 1.04

Pour le rouge on passe à 610/550 = 1.11,   K devient 5*1.11*25% = 1.13

Pour le vert K devient 5*1*50% = 2.5

Ce type de calcul donne l'échantillonnage réel par rapport à un échantillonnage NB du tableau K.

On peut trouver le bon échantillonnage pour qu'une caméra couleur corresponde à l'échantillonnage NB choisi, donc son équivalent en résolution.

Il reste toujours les limites du nombre d'images/s fonction du rapport signal/bruit et intensité objet/sensibilité caméra au travers du télescope.

 

Après au final après les post traitements, si l'image avec la caméra couleur semble trop grande (comme floue), il reste toujours la possibilité de la réduire par division géométrique (ou bining) pour lui attribuer une résolution proche du pixels améliorant seulement la restitution visuelle et sans ce que certains appellent les aberrations chromatiques, l'essentiel c'est que l'information HR soit dans le cumul des images et restituée au final  tout en correspondant au limites du télescope.

 

PS mon meilleur résultat obtenu en de-bayerisation est l’algorithme IVG de RawTherapee . Mais je ne sais pas à quoi il correspond.

 

  • Like 1

Share this post


Link to post
Share on other sites

Bonsoir,

 

Attention au Drizzle,. Il ne faudrait pas le considérer comme le Graal du traitement d'images.

Dans la doc de Prism il y a un bon résumé des conditions  indispensables pour que le Drizzle soit efficace ;

( sinon il ne fera pas mieux que des algo plus classiques )

 

------------------------------------------------

But : Addition d'images sous-échantillonnées par la technique du drizzle. La résolution de l'image résultante sera alors artificiellement meilleure que chacune des N images de départ, décalées statistiquement les unes par rapport aux autres.

C'est une fonction très puissante, qui consiste à compositer efficacement des images individuelles provenant d'un système optique/détecteur sous-échantillonnant, c'est à dire un système optique/détecteur qui produit des images trop fines parce que la focale est trop courte ou que les pixels sont trop grands.

Le but du Drizziling est d'additionner ces images sans perdre leur résolution initiale en profitant du fait qu'elles sont sous-échantillonnées et en nombre suffisant.

-------------------------------------------------

 

On est rarement dans ce cas de figure en planétaire (solaire ou lunaire) haute-résolution.

Ce peut être plutôt une situation de prise de vue en Ciel-Profond classique.

 

Je pense programmer un Drizzle prochainement, on en reparle...

 

Lucien

Edited by Lucien
  • Like 1

Share this post


Link to post
Share on other sites

C est entendu, c'est ce que j ai précisé plus haut. On ne parle pas de drizzle classique mais de bayer drizzle ce qui est différent.  

Share this post


Link to post
Share on other sites
il y a 30 minutes, Lucien a dit :

Ce peut être plutôt une situation de prise de vue en Ciel-Profond classique.

Oui, je l'avais trouvé implémenté sur Deep Sky Stacker, j'expérimentais les réglages à l'époque.

Share this post


Link to post
Share on other sites
il y a 40 minutes, jldauvergne a dit :

bayer drizzle

JLD je crois que tu peux trouvé la réponse tout seul, il te suffit de traiter une de tes vidéos couleur avec ta méthode de de-bayer classique et le refaire avec le bayer drizzle. Au final tu devrais nous annoncer s'il y a vraiment un plus. ;)

  • Like 1

Share this post


Link to post
Share on other sites
il y a une heure, CPI-Z a dit :

JLD je crois que tu peux trouvé la réponse tout seul, il te suffit de traiter une de tes vidéos couleur avec ta méthode de de-bayer classique et le refaire avec le bayer drizzle. Au final tu devrais nous annoncer s'il y a vraiment un plus.

Pas certain que j'ai du stock mais surtout avec quoi on traite ça ? Pixinsight le fait sur étoile et je ne suis pas utilisateur de ce logiciel, son ergonomie me rebute. Après possible que as3 fasse déjà ça sans qu'on le sache ?

  • Like 1

Share this post


Link to post
Share on other sites

@jldauvergne Jean-Luc, non, si tu dematrices chaque image avant alignement et emplilement et donc à la limite ne faire que du drizzle 2x la résolution ne sera pas bonne.

 

le bayer-drizzle x1 garde vraiment LA résolution du pixel SI et SEULEMENT SI on paramètre l’algorithme pour optimiser la résolution et non le rapport Signal sur bruit. Et ça se démontre assez bien sur une pile de 200 images (A7s ou A7III par exemple) et on peut obtenir les 2 extrêmes.

La perte de S/B est conséquente si on veut la résolution optimale. Il faut beaucoup plus d’images.

 

je suis en plein dessus en ce moment car je teste 2 softs (APP et Pixinsight) sur ce mode bien précis en vue du stage AIP de février. C’est même assez impressionnant de voir l’effet des paramètres sur le résultat. Je connais très (très) bien les 2 softs, donc pas de souci. 

 

Ca devrait fonctionner en planétaire (il n’y a pas de raison que ça merdouille) mais il faut que ça soit géré par le soft, et je ne suis pas sur que les logiciels « planétaires » gèrent ce mode alors qu’en ciel profond, ça existe depuis longtemps (DSS le faisait) mais l’algo s’est vraiment amélioré sous Pixinsight et AstroPixel processor 

 

Edited by Philippe Bernhard
  • Like 3

Share this post


Link to post
Share on other sites
il y a 23 minutes, Philippe Bernhard a dit :

Jean-Luc, non, si tu dematrices chaque image avant alignement et emplilement et donc à la limite ne faire que du drizzle 2x la résolution ne sera pas bonne.

 

le bayer-drizzle x1 garde vraiment LA résolution du pixel SI et SEULEMENT SI on paramètre l’algorithme pour optimiser la résolution et non le rapport Signal sur bruit. Et ça se démontre assez bien sur une pile de 200 images (A7s ou A7III par exemple) et on peut obtenir les 2 extrêmes.

 

ok ça c'est intéressant, je pense que ça répond à ma question de départ. Merci !

AS3 est un sacré soft donc il fait peut être déjà ça, mais je ne suis pas certain. Je vais demander à Emil. 

  • Like 1

Share this post


Link to post
Share on other sites

Très intéressant ce fil malgré les digressions..

Je me demande car j'ai pas vraiment compris en quelle mesure le fait de debayériser les fits ou ser d'une camera couleur en amont puis de stacker fait perdre en résolution.

Il y a aussi l'algo de dématricage qui doit jouer. AstroPixelProcessor possède un algorithme propriétaire qui semble faire gagner quelque chose (moins de bruit chromatique et résolution accrue) par rapport au mode bilinéaire classique : Adaptive Airy Disc.

DSS possède aussi le Bayer Drizzle / AHD / Superpixel : Quelle option choisir ?

Le bayer Drizzle divise la résolution de l'image par 2 (c'est ce qui est noté dans DSS).

 

Edited by olivedob
  • Like 1

Share this post


Link to post
Share on other sites
Il y a 19 heures, lyl a dit :

Tu as raison, je préfère qu'on reste côté chaîne optique, c'est le sujet, la numérisation dans la caméra n'en a pas besoin, le DAC n'utilise pas le filtre.

 

le filtre d'entrée est côté optique justement, soit un filtre de luminance, soir Ir cut, soit la lentille elle même ou le coating du miroir, le tout est de savoir à  quelle longueur d'onde ça coupe pour échantillonner plus de 2 fois plus serré avec un peu de marge pour éviter les repliement de spectre.

 

Mais sur quel critère ? car le pouvoir de résolution est toujours basé sur un critère plus ou moins empirique signifiant qu'on arrive à séparer 2 étoiles de même magnitude i.e. avec même figure d'Airy...

 

En pratique ça marche quand même pas mal du tout en prenant la limite de diffraction ou le critère de Dawes avec 15% de marge. Ça c'est le minimum vital pour ne pas être en sous échantillonnage.

Pour me rappeler facilement de l'échantillonnage mini sur le terrain, j'ai adopté une formule hyper simple :

 

e<= lamda / 10d

 

filtre de luminance : lambda = 400nm

D = 200mm par ex 

 

e <= 0,2 " 

 

ca c'est pour du monochrome.

 

Avec un capteur couleur on va devoir serrer un peu plus. d'expérience je sais que je gagne encore avec la 224 à pixel de 3,75 jusqu'à f/D 28 environ, mais avec une optique de course comme dis Jean Luc ci dessus.

 

Il y a 20 heures, patry a dit :

Hors une étoile (non résolue) et à distance respectueuse de l'artefact de la figure d'airy, est assez représentative de la fonction de dirac : un fond à zéro (le ciel) et une étoile qui fournit toute son énergie sur un unique pixel du détecteur.

 

heu...une étoile dans un télescope c'est la figure d'Airy. C'est ça le vrai signal à reproduire fidèlement en sortie par un échantillonnage suffisamment serré.

 

C'est toujours non résolu en optique (à part Betelgeuse et ses copines au VLT par interférométrie).

 

En planétaire (que tu connais bien) on essaie justement d'échantillonner suffisamment serré pour reproduire fidèlement ce que "voit" le télescope et profiter de son pouvoir séparateur au mieux. 

Transformer la figure d'Airy en diract, c'est un grave sous échantillonnage ou autre (filtre passe haut), en tout cas le signal de sortie n'a plus rien à voir avec l'entrée.

On peut pas dire qu'une étoile dans un télescope c'est un dirac, c'est justement le contraire : le télescope est incapable de reproduire un dirac à cause de la diffraction due au diamètre fini du télescope qui résulte en la figure d'Airy.

Mais tout ça on connaît tous vue qu'on s'acharne avec nos barlow pour trouver le bon échantillonnage en planétaire.

Edited by olivdeso

Share this post


Link to post
Share on other sites
Il y a 6 heures, olivedob a dit :

AstroPixelProcessor possède un algorithme propriétaire qui semble faire gagner quelque chose (moins de bruit chromatique et résolution accrue) par rapport au mode bilinéaire classique : Adaptive Airy Disc.

DSS possède aussi le Bayer Drizzle / AHD / Superpixel : Quelle option choisir ?

Le bayer Drizzle divise la résolution de l'image par 2 (c'est ce qui est noté dans DSS).

 

Il y a 2 passes dans le bayer-drizzle :

1) on dématrice chaque image, on aligne, on empile en methode classique mais on note les paramètres d’alignement et d’empilement de chaque image. 

2) on repart de la brute calibrée N&B et on calcule le drizzle en appliquant les paramètres de chaque image. Mais on ajuste les paramètres de l’algo pour optimiser soit la résolution soit le S/B.

 

Donc, non, la résolution n’est pas divisée par 2 sauf peut-être sur DSS qui n’a AUCUN réglage de l’algorithme.

C’est très bien expliqué sur APP et Pixinsight 

Par contre, APP conseille entre 2 et 2.5 en top hat (de memoire, je n’ai pas le pc sous les yeux) ce qui donne un compromis trop doux pour moi. Je suis plutôt autour de 1.25 ou 1.5 pour mon compromis perso.

Sous pixinsight, les paramètres sont différents mais au final il y a l’embarras du choix, Les 2 logiciels offrent vraiment toutes les possibilités pour obtenir ce que l’on veut mais certaines options nécessitent un très grand nombre d’images et un dithering plus large 

 

 

  • Like 2

Share this post


Link to post
Share on other sites
Il y a 6 heures, olivdeso a dit :

d'expérience je sais que je gagne encore avec la 224 à pixel de 3,75 jusqu'à f/D 28 environ,

Ce qui n'est pas loin de la règle que tu donnes augmentée de 30% de perte sur la matrice de bayer. On obtient en suivant cette logique f/25. Je suis proche de cette valeur f/24 et je peux affirmer que c'est insuffisant les bons soirs, ça recoupe ce que tu dis, à f/28. 

 

Il y a 6 heures, olivdeso a dit :

e<= lamda / 10d

Du coup il faut suivre cette logique comme règle de base et on peut se dire que l'on ajoute 10% de marge qui ne seront pas de trop les bons soirs et si on sait que l'on a une très bonne optique. 
Sur mon montage je reste un peu au dessus de ça dans la pratique avec e=L/16d à 400 nm. Mais bon, c'est aussi un compromis entre les deux capteurs que j'utilise d'une part, les contraintes du montage avec ADC, et d'autre part en grand fou je vise plutôt L=350 nm (dans la pratique je sais que je n'ai pas encore réussi à franchir le mur des 400 nm en résolution mais je ne m'avoue pas vaincu :) ). Je ne vais pas changer de montage en tout cas, en début de train optique il y a la barlow Clavé qu'utilisait notre très regretté Gérard dans les années 90.

Share this post


Link to post
Share on other sites

Jean luc, le mieux ne serait il pas de revenir aux sources ?

Sous IRIS (je connais moins ISIS mais ca doit marcher aussi), tu sépare ton flux en un tripler de flux R, G et B (commande split_rgb de mémoire). De là tu traite (en drizzle si tu veux ce serait bien) chaque plan (attention tu aura des résolutions différentes en RB et en G, donc il faudrait limiter le drizzle de la couche verte) et tu recombine le tout à la fin. Cela devrait bien donner le même résultat que le bayer drizzle et avec un peu d'analyse en déduire ce qui est fait dans d'autres softs (ou pas fait plutôt).

Comme il est acquis qu'en couleur on a un plus grand espacement entre les photosites, le drizzle est une bonne solution pour  combler ce manque et faire ce qu'un capteur mono obtient tout naturellement.

 

Il y a 6 heures, olivdeso a dit :

En planétaire (que tu connais bien) on essaie justement d'échantillonner suffisamment serré pour reproduire fidèlement ce que "voit" le télescope et profiter de son pouvoir séparateur au mieux. 

Transformer la figure d'Airy en diract, c'est un grave sous échantillonnage ou autre (filtre passe haut), en tout cas le signal de sortie n'a plus rien à voir avec l'entrée.

 

Je comprends ce que tu dis, mais à la base, le télescope ne "voit" pas une figure d'airy, c'est le fruit de sa fonction de transfert (sinon, tous les instruments verraient la même chose) depuis le dirac. Et le dirac c'est l'asymptote de ce que tu veux obtenir non ?

Si j'ai écrit que je transformait la figure d'airy en dirac c'est une maladresse de ma part.

 

Marc

 

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

    • By Meade45
      Bonjour,
       
         Houlàlà, j'ai honte ! Après 10 ans d'arrêt je viens de charger mon Iris qui entre temps est passé de la version 4 à la 5.59. 
      A l'époque j'utilisais une Webcam TouCam Pro. Mais c'était à l'époque !
      Je viens d'acquérir une Touptek G3M178C.
      Elle semble bien et est reconnue dans PHD2 par ex.
      Mais je suis perdu dans Iris, je ne retrouve plus l'onglet Camera qui me permettait de choisir le périphérique de guidage.
      Je n'y vois plus que des APN type Canon !
      Alors forcément dans Video/Preview, Iris  m'annonce que le périphérique de capture  n'est pas installé correctement !
      Si vous pouviez  me remettre sur la voie...
      Par avance merci.
      Guy
       
    • By Bernard_Bayle
      Bonjour tout le monde .
       
      Je suis assez intéressé par la nouvelle caméra ASI462mccolor  sans doute la remplaçante de l'ASI290MC .
      La question que je me pose c'est ce que vont donné les 2.9µm , du capteur sur mon C11 ??

      Actuellement l'échantillonage de 0.12"/pix que j'obtiens avec les 3.75 µm + mon train optique me donne totalement satisfaction
      et j'aimerai bien retrouver ces 0.12"/pix sur cette ASI462mc ??

      La nouvelle Caméra ASI462mccolor
      https://astronomy-imaging-camera.com/product/asi462mccolor
       
      des Tests sur le fil sur cloudynights :
      https://www.cloudynights.com/topic/715835-new-asi-462mc-camera-test-first-lightjove-saturn-mars/?fbclid=IwAR3mBXrLcTbZ_QG9zEWebx8SRHM7oQgnLuJgRcnaWIxJScZUn_AKY1ewajU
       
      Bernard_Bayle
    • By yann35
      Bonjour,
      Connaissez vous ces jumelles, ont-elles un intérêt pour l'astronomie ?
      la réputation des Séries FMT n'est plus à faire, 
      mais les D/N (Day/Night) à oculaires interchangeables sont peut êtres à regarder de plus prêt...
      A+
      Yann
    • By alanc145
      Bonjour,
       
      La question peut être débile mais selon moi (et c'est ce que je dis à mes eleves) la seule betise est de ne pas poser la question.
       
      Donc je la pose: j’ai une lunette OTA et je vais acheter une lunette guide de 50 mm. Avec quel oculaire on peut transformer cette lunette guide en chercheur pour le visuel ? Quel grossissement, quel champs ?
       
      J'ai chercher sur la toile mais je n'ai vu que des réponses sur des chercheurs transformés en lunettes guide et non l'inverse.
      Sachant qu'un chercheur coûte 40 euros et un oculaire grand angle bas de gamme 30 euros bon je me pose la question.
       
      Du monde pour m’éclairer ?
    • By guy03
      Bonjour
      J'avais lu pas de choses sur le nettoyage,le démontage des lames de schimdt ....des trucs bien stressant! Du genre si vous n’êtes pas bricoleur laisser tomber, l'appairage de la lame au remontage au 10ème de mm etc etc. Il faut un peu démystifier la chose car finalement c'est simple à faire,enfin assez simple car pour moi le plus dur aura été de bien nettoyer la lame !  
      Ma lame était devenue dégueu...grosses crasses à l intérieur,poussières,tâches genre ....on se demande ce que c'est!  Un petit nettoyage s'imposait. J'ai un C11 XLT,  démonter la lame est facile. On enlève l'anneau qui maintient la lame, ensuite les deux cales en demi cercle en "papier carton" ,  on débloque les minuscules vis BTR qui grâce à des poussoirs en téflon cale et centre la lame. 
      Le plus compliqué c'est de nettoyer correctement la lame! J'ai fait cela avec de l'eau, du coton démaquillant un peu de produit à lunette et une lingette microfibre. Ma lame à changé d'allure même si le nettoyage n'est pas parfait à 100 pour 100! J'ai toujours une ou deux petites "poussières" sur la face interne mais bon .....pas grave, le plus gros est parti.
      J'avais bien sûr pris mes repères avec des petits morceaux de papiers collant etc etc. Mais comme je suis un Gaston, il fallait bien que j'en fasse une!  Après avoir nettoyé la lame, je la repose sur le tube, la recentre avec les vis BTR, la bloque tout doux et enlève mes repères en papier. C'est là que Gaston la gaffe intervient; la propreté de la lame ne me convient pas car il reste deux trois merdouilles dessus et je la retire!!! sans avoir remis des nouveaux repaires!!
      Bref.....pas de panique je dois bien avoir une photo du télescope "vue de face" dans le portable! Je me fie donc à une images gros plan de mon tube et replace la lame à quelques millimètres près comme elle était. Je me repère à la queue d'arronde, la position  des 3 vis de collimation et à l'inscription FASTAR COMPIBLE sur le devant du miroir secondaire (qui lui n'avait pas bougé).
      Hier soir en 5 minutes j'ai recollimaté le tube sans soucis avec une étoile artificielle car trop de nuages! J'ai bien sûr hâte de viser de vraies étoiles pour peaufiner le tout. Tout ça pour dire que le démontage d'une lame de schmidt c'est pas la mer à boire. Ah oui les gants en latex sont obligatoires bien sûr!! Remettre la lame comme elle est, c'est mieux, d'où faire des repères mais tout ne se joue pas au millimètres. Vous aussi si vous avez besoin de nettoyer votre lame, faite le vous même et sans stress, ce n'est pas compliqué du tout. Il faut juste être attentif à l'ordre des choses à effectuer (pas comme moi) et cette opération peut être assez rapide. Je le redis, le plus fastidieux c'est le nettoyage car quand on regarde la lame une fois nettoyée sur la table et de nouveau quand elle est sur le tube ce n'est plus du tout la même chose!!
       
  • Images