4.2 - Sous la glace d'Europe?

Le vaisseau spatial Galiléo a fourni de très belles images d'Europe, l'une des lunes de Jupiter. En 1979 et 1980, la mission Voyager avait déjà photographié Europe et montré que sa surface était recouverte par de la glace entaillée de profondes crevasses. Les images de Galiléo montrent des blocs de banquise ayant pivoté sur eux-mêmes, vraisemblablement sur un sous-sol fluide. La surface présente peu de cratères d'impacts ce qui suggère un remodelage continu de la surface par des phénomènes cryovolcaniques ou tectoniques. Selon l'un des modèles proposés, il y aurait un océan d'eau liquide sous quelques dizaines de kilomètres de banquise. La chaleur nécessaire au maintien de l'eau à l'état liquide serait apportée par les fortes marées internes générées par les variations de l'important champ gravitationnel de Jupiter. Un transfert de chaleur du coeur planétaire vers la surface, semblable à celui des évents hydrothermaux des océans terrestres, constitue une autre source possible d'énergie thermique. Si l'eau liquide est présente sous la couche glaciaire, il est possible que cette eau contiennent des molécules organiques provenant des évents hydrothermaux. Une chimie organique prébiotique de type terrestre a donc pu s'y développer et conduire à l'apparition de la vie. Si Europe a maintenu une activité de marée et une activité hydrothermal sous-glaciaire, la vie bactérienne y est peut être encore active aujourd'hui. Europe apparait de plus en plus comme un lieu privilégié du système solaire pouvant héberger de l'eau liquide et une vie bactérienne en activité. Des missions vers Europe sont actuellement à l'étude.

4.3 - Au-delà du système solaire?

Les radioastronomes ont démontré que la chimie organique est universelle. En effet, 83 molécules organiques ont été identifiées à ce jour dans les nuages denses de gaz et de poussières du milieu interstellaire. Mais existe-t-il d'autres niches susceptibles d'héberger de l'eau en dehors du système solaire? En septembre 1995, les Suisses Mayor et Queloz après un suivi systématique des vitesses d'une centaine d'étoiles à l'Observatoire de Haute Provence découvraient un corps de la taille moitié de celle de Jupiter en orbite autour de l'étoile 51 Pegase (la précision des instruments actuels ne permet de voir que des planètes dont la taille est voisine de celle de Jupiter). Toutefois, l'objet présumé serait très proche de l'étoile et aurait une température de 1500°C, température trop élevée pour la vie. Quatre mois plus tard, ls Américains Marcy et Butler décrivaient deux objets ayant 2,8 et 6,4 fois la masse de Jupiter près des étoiles 70 Virgin dans la constellation de la Vierge et 47 Uma dans la constellation de la Grande Ours. Les objets sont situés plus loin de l'étoile. La planète 70 Vir, géante et probablement gazeuse, est peu propice à la vie.

Page précédente

 

 

Elle pourrait, cependant, à l'instar de Jupiter et Saturne, avoir des satellites de la taille de la Terre avec des températures permettant la présence d'eau liquide. A ce jour, le catalogue compte 28 planètes géantes extrasolaires.

5 - Comment détecter une vie extraterrestre?

L'enrichissement isotopique en carbone 12 et l'homochiralité des molécules biologiques sont certainement les signatures les plus remarquables de la vie terrestre. Grâce aux missions spatiales, les planètes du système solaire sont devenues accessibles à l'analyse organique, minérale et isotopique directement sur le terrain. L'examen minéralogique des roches permet d'identifier des structures minérales macroscopiques résultant de l'activité bactérienne (biominéraux comme, par exemple, les stromatolithes) mais aussi des microfossiles de bactéries. Enfin, la recherche d'anomalies dans l'environnement planétaire comme, par exemple, des teneurs particulièrement élevées en méthane dans l'atmosphère, permet de mettre en évidence une vie bactérienne active. Pour les planètes extrasolaires, la recherche d'une forme de vie est plus difficile. L'atmosphère terrestre renferme en permanence 21% d'oxygène alors que les atmosphères des autres planètes du système solaire n'en renferment que des traces. La présence permanente d'oxygène est liée à la vie qui se développe à la surface de la Terre. La planète recherchée doit, par exemple, posséder de l'eau et de l'oxygène identifiable par sa raie caractéristique à 760 nm dans la spectre visible de la planète. Pour des raisons pratiques, il parait plus judicieux de rechercher la signature de l'ozone dans le spectre infrarouge à 9,6 µm. Pour distinguer le spectre de la planète de celui de l'étoile, un groupe d'astrophysiciens français animé par Alain Léger propose la construction d'un interféromètre spatial infrarouge à cinq télescopes. Le dispositif Darwin-IRSI est actuellemnt à l'étude à l'Agence Spatiale Européenne. La NASA étudie un dispositif semblable appelé mission TPF.

Enfin, la détection d'un signal électromagnétique "intelligent" (SETI) apporterait la preuve indéniable de l'existence d'une vie extrasolaire. Le programme d'écoute mérite d'être soutenu même si, a priori, la probabilité pour qu'une vie bactérienne extrasolaire évolue vers des systèmes vivants exploitant l'électromagnétisme reste très faible. Nombreux sont les scientifiques qui pressentent que la vie bactérienne n'est pas restreinte à la Terre. Reste maintenant à le prouver par l'expérience. Voilà certainement un défi scientifique majeur pour l'an 2000.

Retour accueil exobiologie

Vous voulez faire partie d'une liste de discussion sur l'Exobiologie ?

Retour Accueil