Bonjour,
Le JWST observe la ceinture de Kuiper : Sedna, Gonggong et Quaoar
https://phys.org/news/2023-10-jwst-kuiper-belt-sedna-gonggong.html
La ceinture de Kuiper, vaste région aux confins de notre système solaire peuplée d’innombrables objets glacés, est un trésor de découvertes scientifiques. La détection et la caractérisation des objets de la ceinture de Kuiper (KBO), parfois appelés objets transneptuniens (TNO), ont conduit à une nouvelle compréhension de l'histoire du système solaire.
La disposition des KBO est un indicateur des courants gravitationnels qui ont façonné le système solaire et révèle une histoire dynamique de migrations planétaires. Depuis la fin du 20e siècle, les scientifiques souhaitent examiner de plus près les KBO pour en savoir plus sur leurs orbites et leur composition.
L'étude des corps du système solaire externe est l'un des nombreux objectifs du télescope spatial James Webb (JWST). À l'aide des données obtenues par le spectromètre proche infrarouge de Webb (NIRSpec), une équipe internationale d'astronomes a observé trois planètes naines dans la ceinture de Kuiper : Sedna, Gonggong et Quaoar. Ces observations ont révélé plusieurs choses intéressantes sur leurs orbites et leur composition respectives, notamment la présence d'hydrocarbures légers et de molécules organiques complexes que l’on pense résulter de l’irradiation du méthane.
La recherche a été dirigée par Joshua Emery, professeur agrégé d'astronomie et de sciences planétaires à la Northern Arizona University. Il a été rejoint par des chercheurs du Goddard Space Flight Center (GSFC) de la NASA, de l'Institut d'Astrophysique Spatiale (Université Paris-Saclay), du Pinhead Institute, du Florida Space Institute (University of Central Florida), du Lowell Observatory, du Southwest Research Institute (SwRI), Space Telescope Science Institute (STScI) et de l'Université Cornell. Une préimpression de leur article a été publiée sur le serveur arXiv et est en cours d'examen pour publication par Icarus .
Malgré tous les progrès de l’astronomie et des sondes robotiques, ce que nous savons de la région transneptunienne et de la ceinture de Kuiper est encore limité. À ce jour, la seule mission destinée à étudier Uranus, Neptune et leurs principaux satellites était la mission Voyager 2, qui a survolé ces planètes géantes de glace respectivement en 1986 et 198. De plus, la mission New Horizons a été le premier vaisseau spatial à étudier Pluton et ses satellites (en juillet 2015) et le seul à rencontrer un objet dans la ceinture de Kuiper, ce qui s'est produit le 1er janvier 2019, alors qu'il survolait le KBO connu sous le nom de Arrokoth.
C’est l’une des nombreuses raisons pour lesquelles les astronomes attendaient avec impatience le lancement du JWST. En plus d’étudier les exoplanètes et les premières galaxies de l’univers, ses puissantes capacités d’imagerie infrarouge ont également été tournées vers les marges du système solaire, révélant d'abord de nouvelles images de Mars, de Jupiter et de ses plus gros satellites. Pour leur étude, Emery et ses collègues ont consulté les données dans le proche infrarouge obtenues par le Webb télescope sur trois planétoïdes de la ceinture de Kuiper : Sedna, Gonggong et Quaoar. Ces corps ont un diamètre d'environ 1 000 km, ce qui les place dans la désignation IAU des planètes naines.

Images de l'une des deux observations du réseau PRISM de Sedna, Gonggong et Quaoar. Crédit : Emery, JP et al. (2023)
Comme Emery l'a déclaré à Universe Today par courrier électronique, ces corps sont particulièrement intéressants pour les astronomes en raison de leur taille, de leurs orbites et de leurs compositions. D'autres corps transneptuniens, comme Pluton, Éris, Haumea et Makemake, ont tous retenu des glaces volatiles à leur surface (azote, méthane, etc.). La seule exception est Haumea, qui a perdu ses substances volatiles lors d'un impact important (apparemment). Comme Emery l'a dit, ils voulaient voir si Sedna, Gonggong et Quaoar avaient également des substances volatiles similaires sur leurs surfaces :
"Des travaux antérieurs ont montré que cela pourrait être le cas. Bien qu'ils soient tous de tailles à peu près similaires, leurs orbites sont distinctes. Sedna est un objet interne du nuage d'Oort avec un périhélie de 76 UA et un aphélie à près de 1 000 UA, Gonggong est aussi sur une orbite très elliptique, avec un périhélie de 33 UA et un aphélie d'environ 100 UA, et Quaoar est sur une orbite relativement circulaire proche de 43 UA. Ces orbites placent les corps dans différents régimes de température et différents environnements d'irradiation.
À l'aide des données de l'instrument NIRSpec de Webb, l'équipe a observé les trois corps en mode prisme basse résolution à des longueurs d'onde allant de 0,7 à 5,2 micromètres (µm), les plaçant tous dans le spectre proche infrarouge. Des observations supplémentaires ont été faites sur Quaoar de 0,97 à 3,16 µm en utilisant des réseaux à moyenne résolution à dix fois la résolution spectrale. Les spectres résultants ont révélé des choses intéressantes sur ces TNO et leurs compositions de surface, indique Emery :
"Nous avons trouvé de l'éthane (C2 H6 ) en abondance sur les trois corps, surtout sur Sedna. Sedna recèle également de l'acétylène (C2 H2 ) et de l'éthylène (C2 H4 ). Les abondances sont en corrélation avec l'orbite (leurs présences sont nettes sur Sedna , moins sur Gonggong, moins sur Quaoar), ce qui est cohérent avec les températures relatives et les environnements d'irradiation. Ces molécules sont des produits d'irradiation directe du méthane (CH4 ). Si l'éthane (ou les autres molécules) était resté longtemps sur les surfaces, ils auraient été transformés en molécules encore plus complexes par irradiation. Comme nous les voyons encore, nous soupçonnons que du méthane (CH4 ) doit être réapprovisionné assez régulièrement en surface."
Ces résultats concordent avec ceux présentés dans deux études récentes dirigées par le Dr Will Grundy, astronome à l'Observatoire Lowell et co-chercheur de la mission New Horizons, et Chris Glein, planétologue et géochimiste au SwRI. Pour les deux études, Grundy, Glien et leurs collègues ont mesuré les rapports deutérium/hydrogène (D/H) dans le méthane sur Eris et Makemake et ont conclu que le méthane n'était pas primordial. Au lieu de cela, ils soutiennent que les ratios résultent d'une transformation du méthane dans l'intérieur de ces objets puis de leur libération à la surface.

"Nous pensons que la même chose pourrait être vraie pour Sedna, Gonggong et Quaoar", explique Emery. "Nous constatons également que les spectres de Sedna, Gonggong et Quaoar sont distincts de ceux des petits KBO. Il y a eu des discussions lors de deux conférences récentes qui ont permis de classer les données JWST des petits KBO regroupés en trois groupes, dont aucun ne ressemble à Sedna, Gonggong, et Quaoar. Ce résultat est cohérent avec le fait que nos trois plus grands corps ont une histoire géothermique différente.
Ces découvertes pourraient avoir des implications significatives pour l’étude des KBO, des TNO et d’autres objets du système solaire externe. Cela inclut de nouvelles informations sur la formation d’objets au-delà de la ligne de glace dans les systèmes planétaires, qui fait référence à la ligne au-delà de laquelle les composés volatils gèlent. Dans notre système solaire, la région transneptunienne correspond cette ligne pour l'azote, où les corps retiendront de grandes quantités de substances volatiles avec des points de congélation très bas (c'est-à-dire l'azote, le méthane et l'ammoniac).
Ces découvertes, déclare Emery, démontrent également quel type de processus évolutifs sont à l'œuvre pour les corps dans cette région. "La principale implication pourrait être de déterminer la taille à laquelle les KBO sont devenus suffisamment chauds pour le retraitement intérieur des glaces primordiales, peut-être même pour leur différenciation. Nous devrions également être en mesure d'utiliser ces spectres pour mieux comprendre la transformation par irradiation des glaces de surface dans le système solaire externe. Et les études futures pourront également examiner plus en détail la stabilité volatile et la possibilité d’atmosphères sur ces corps sur n’importe quelle partie de leurs orbites. »
Les résultats de cette étude mettent également en valeur les capacités du JWST, qui a fait ses preuves à de nombreuses reprises depuis sa mise en service au début de l'année dernière. Ils nous rappellent également qu'en plus de permettre de nouvelles visions et de percées sur des planètes lointaines, des galaxies et la structure à grande échelle de l'univers, le Webb peut également révéler des choses sur notre petit coin du cosmos.
"Les données JWST sont fantastiques", ajoute Emery. "Elles nous ont permis d'obtenir des spectres à des longueurs d'onde plus longues que celles que nous pouvons obtenir depuis le sol, ce qui a permis la détection de ces glaces. Souvent, lors de l'observation dans une nouvelle gamme de longueurs d'onde, les données initiales peuvent être de très mauvaise qualité. JWST a non seulement ouvert une nouvelle gamme de longueurs d'onde, mais a également fourni des données d'une qualité fantastique, sensibles à une série de matériaux présents sur les surfaces du système solaire externe.
 
    • J'aime
    • Merci
    7