bpollet

Member
  • Content count

    326
  • Joined

  • Last visited

  • Country

    France

Everything posted by bpollet

  1. Je suis en train de revoir tout ça... Mais en abordant l'erreur périodique, l'autoguidage, l'histoire de M Dobson et tout et tout. C'est un peu long pas juste quelques paragraphes. Bon au moins ce sera fait. J'espère que ce sera lu... Je vous reviens dans quelques jours avec une version plus complète qui comprendra aussi les SCT et MAK. Bon par contre vous m'en voudrez pas si je ne traite pas les Dall kirhamm, les RASA et autres trucs spécifiques...non?
  2. Bonjour, je prépare un petit article pour les membres du clubcassini de Versailles, et je voulais vous en faire profiter en primeur. Je pense que ça peut être utile à plein de débutants, ici. Peut-être mériterait il d'être épinglé? je ne sais pas. Je laisse les administrateurs en juger, d'ailleurs, je ne sais même pas si je poste au bon endroit sur le forum. En tout cas, n'hésitez pas à compléter, commenter, m'insulter.. A l’approche des fêtes de noël, vous souhaitez peut être acheter de quoi observer le ciel, mais vous êtes complètement perdus dans la jungle des prix et le jargon des astronomes amateurs. Vous avez déjà identifié un “tube” ou tuyau comme disent certains, mais vous ne comprenez pas pourquoi les prix vont du simple au triple voire beaucoup plus dans certains cas en fonction du modèle. Alors ce post est fait pour vous. Il n’a pas pour vocation de débattre de l’utilité d’un télescope par rapport à une lunette. Je rappelle toutefois les domaines d’emploi des différents types de télescopes par ce très bon tableau tiré du site d’Optique Unterlinden. Voilà, maintenant que c’est présenté (succinctement et sans explication, je vous l’accorde), je présume que votre choix est fait. Si ce n’est pas le cas et que vous êtes débutant vous pouvez commencer par ce test: https://www.webastro.net/Pages/choix_instrument_astronomie/ Le but de ce post n’est vraiment pas de troller le forum, mais juste de vous expliquer le plus simplement possible (et donc je ne serai pas exhaustif) ce qui fait d’un télescope ou d’une lunette un produit beaucoup plus cher qu’un autre. Comme je ne suis sponsorisé par personne (pourtant j’aimerai bien), j’essaierai de ne donner aucune marque. Aussi, je ne rentrerai pas dans le débat du pays de fabrication. Il a de très bons opticiens partout dans le monde, même en Chine! D'ailleurs le premier fabricant mondial de télescope et de lunettes est chinois et il tire très honorablement son épingle du jeu sur le plan qualité et finition. Mais il est évident que ces produits d’Extrême Orient restent globalement moins chers que les produits européens, (même si ces dernières années, les coûts d’importation inversent doucement la tendance). Je n’aborderai que 2 types de tube, le tout pouvant être transposé aux autres tubes: Le réfracteur ou Lunette Le réflecteur ou télescope de Newton La lunette La lunette est un instrument de choix pour l’astronome amateur, il est simple à utiliser, ne nécessite pas de collimation, et généralement propose de courtes focales pour ceux qui veulent observer/photographier les grands champs stellaires. Mais à focale et diamètre équivalent on trouve différents modèles. La lunette est composée d’un élément de verre (lentille) que la lumière traverse et qui “focalise” le faisceau lumineux jusqu’à l’oculaire, au point focal. La lunette “simple”: Les lois de l’optique et de la diffraction indiquent que le foyer d’une lentille en verre est différent en fonction de la longueur d’onde de la lumière. En d’autres termes, pour un faisceau de lumière blanche qui rentre par la lunette, la composante rouge ne se focalise pas au même endroit que la composante verte ou bleue. Les opticiens appellent ce phénomène l'aberration chromatique. Les premiers prix sont souvent des verres simples et pour de courtes focales c’est un problème puisque l’on n’arrive pas à obtenir une image parfaitement nette dans le rouge et dans le bleu en même temps. Pour de longues focales (F/D 10) le problème est moins gênant car moins prononcé. Le doublet Pour compenser l’aberration chromatique, les opticiens ont inventé des formules à deux lentilles dont une est une lentille Extra low Dispersion (ED). Cette lentille, difficile à fabriquer, est coûteuse et peut être de différents types (nous ne rentrerons pas dans le détail). L’utilisation de ce verre, que l’on appelle verre de Crown (1) associé à un verre plus fin ou verre de Flint (2) permet de diminuer drastiquement les effets de l’aberration chromatique. Généralement seule la composante verte/bleue reste mal corrigée. Le doublet fluorite Le doublet fluorite est un doublet comme les autres, c’est juste qu’il utilise un verre de Crown avec la plus faible dispersion chromatique possible. Ce verre n’en est pas un en réalité, il s’agit d’un cristal particulièrement difficile à travailler: La fluorine qui est composée de fluorure de calcium CaF2. On trouve dans cette catégorie principalement des lunettes de fabrication japonaise (il y a plusieurs marques). Mais la qualité de fabrication japonaise associée et l'élément coûteux qu’est la fluorine en font des lunettes très chères, mais presque totalement exemptes d’aberration chromatique. Le triplet Heureusement il existe une solution moins coûteuse que l’emploi de la fluorine pour réduire l’aberration chromatique: L’emploi de trois lentilles dans ce qu’on appelle le triplet ou lunette apochromatique. Il n’est pas rare qu’entre les 3 lentilles faites de matériaux différents on trouve des liquides avec des propriétés optiques particulières dans le but de ramener le foyer de toutes les longueurs d’onde au même endroit. Il en résulte des images très nettes. Ce sont les lunettes les plus chères, mais qui procurent avec les doublets fluorites les meilleures images. Toutefois elles sont plus lourdes que les doublets fluorites à cause de l’emploi de 3 éléments de verre. Les variantes: quadruplet et quintuplet Le chromatisme n’est pas le seul défaut des lunettes. Les lunettes souffrent d’un autre mal: le champ n’est plan que sur une portion de l’axe optique. Alors que cela ne pose pratiquement pas de problème à l’observateur visuel, le photographe peut se retrouver, s’il utilise un grand capteur, avec des étoiles étirées dans les coins. Pour corriger cela, il est possible d’utiliser un correcteur de champs qui est lui-même un doublet. Sur un quadruplet, le correcteur de champs est directement intégré dans le porte oculaire d’un doublet. Il y a alors 4 lentilles au total (Quadruplet). Pour un quintuplet, il est intégré dans le porte oculaire d’un triplet. Évidemment cela a un coût certain. Ces solutions sont essentiellement dédiées aux astrophotographes qui peuvent choisir d’équiper à posteriori leur doublet ou triplet, mais qui se trouvent alors à devoir régler avec un très grande précision la distance du capteur de leur APN/caméra à l'arrière du correcteur pour obtenir l’image souhaitée. Sur un quadruplet ou un quintuplet, cette distance est préréglée et optimisée. Le carbone Lorsqu'on observe, il est fréquent que la température change au cours de la nuit. La plupart des tubes sont en aluminium. Ce matériau a un coefficient de dilatation important. Donc lorsque la température change de plus de 5°C, la mise au point change aussi. Pour un observateur visuel, cela n’a pas beaucoup d’importance, mais pour un astrophotographe qui vise la même cible toute une nuit sans toucher sa mise au point, les photos prises en fin de séance risquent bien de ne plus être au point du tout. Il est possible actuellement de corriger ce problème avec des moteurs de mise au point qui détectent les changements de température et corrigent tout seul la mise au point, mais l’une des solutions les plus efficaces reste encore d’utiliser le carbone en lieu et place de l'aluminium pour le corps du tube. Le carbone a un coefficient de dilatation beaucoup plus faible que l’aluminium (10 fois plus faible environ) et les corrections à apporter à la mise au point sont négligeables. Les autres intérêts du carbone sont la rigidité (si le tube est long) et la légèreté permettant de soulager la monture. Évidemment le carbone coûte bien plus cher que l’aluminium. La mise au point Un autre point important est la mise au point et le porte oculaire en particulier. Il est souvent proposé des mises au point démultipliées au 1:10 ou 1:7 qui permettent de trouver avec plus de précision le point focal de l’instrument. Bien que destiné plutôt aux astrophotographes, je dois admettre que c’est quand même bien pratique aussi en visuel pur. Outre la démultiplication un bon porte oculaire permet aussi de maintenir de lourdes charges sans bouger, tout en pointant au zénith et disposent d'un mécanisme de verrouillage qui ne modifient pas la mise au point. Un porte oculaire peut être constitué d’un rail à crémaillère ou bien d’un dispositif Crayford. Le second est constitué d’une plaque qui roule sur des rouleaux, et est beaucoup plus agréable, précis et souple à utiliser. Enfin d'autres options existent comme la possibilité de visser un filtre, ou de l’insérer dans le chemin optique, de faire tourner le porte oculaire autour de l’axe optique (bien pratique pour le cadrage). Outre le mécanisme de mise au point, on trouve des portes oculaires au coulant 31,75mm (1,25”) dédiés à porter des oculaires de même taille exclusivement et des portes oculaires au format 50,80mm (2”) avec une bague de réduction pour pouvoir utiliser des oculaires 1,25” ou 2”. Ces derniers sont également intéressants en photographie car permettent généralement d’avoir des champs plus larges (sous réserve d’utiliser le capteur ad’hoc). La plupart des fournisseurs proposent actuellement des portes oculaires 2” de série, voire même plus gros, à part quelques marques notamment japonaises qui équipent leur lunette avec des portes oculaires de série en 31,75mm C’est donc ainsi que l’on peut trouver des lunettes de 80mm à 100€ seulement ou à 1500€, voire plus. A cela peuvent s’ajouter des accessoires additionnels (collier, chercheur, masque de Bathinov, oculaires, renvois coudés) qui en fonction de leur qualité viendront également gonfler la note. Le télescope de newton Le Newton est un autre télescope de choix, il est peu coûteux par rapport à une lunette et propose des diamètres plus importants. C’est un télescope globalement plus polyvalent que la lunette, mais qui nécessite d'être collimaté régulièrement. Les débutants s'en font souvent une montagne mais c'est une opération très simple qui peut se faire de nuit sur une étoile ou de jour avec un laser de collimation qui consiste à aligner tous les éléments sur l'axe optique à l'aide de 3 vis sur le miroir secondaire et de 3 ou 6 vis sur le miroir secondaire (Il existe de très bons tutoriaux pour cette opération). On peut l’utiliser sur une monture équatoriale ou sur une monture de type Dobson. Cette dernière monture est particulièrement destinée aux astronomes férus de visuel, mais il faut toutefois bien choisir son tube afin de pouvoir profiter au maximum de son instrument. Pour rappel, le télescope de Newton est constitué d’un miroir primaire de forme sphérique ou parabolique qui capte la lumière et qui fait son diamètre. Cet élément réflecteur focalise le flux lumineux en direction d’un miroir secondaire plan, incliné vers le porte oculaire. La forme du miroir Les miroirs les plus faciles à fabriquer, et donc les moins chers, sont les miroirs sphériques. Seulement le problème des miroirs sphériques c’est qu'ils ne concentrent pas la lumière en un point focal unique Pour des instruments de petits diamètres (jusqu'à 130mm) c’est parfaitement acceptable puisque la parabole ou la sphère sont confondus. Toutefois pour les diamètres supérieurs à 130mm les miroirs sphériques ne procurent pas de bonnes images. Il faut utiliser des miroirs paraboliques, plus compliqués à polir. Plus le diamètre est grand, plus la parabolisation est importante et plus elle est difficile à obtenir. Ce qui explique en partie le coût des miroirs de gros diamètres. Au-delà de la forme générale, les miroirs industriels sont parfois “sous-parabolisés” ou “sur-parabolisés”, avec des bords rabattus ou de grosses bosses...Ces anomalies ne sont pas visibles à l'œil nu, mais visibles lorsqu'on réalise un test de Foucault. Certains vendeurs contrôlent ces miroirs avant de les expédier chez le client et fournissent un rapport de test. Cela a un coût certain, mais c’est important puisque c’est la garantie que votre miroir est de bonne qualité. Rassurez-vous toutefois, les miroirs industriels ont aujourd’hui un processus de fabrication et de polissage bien maîtrisé et il est particulièrement rare aujourd’hui de trouver des miroirs avec de grosses anomalies. L’état de surface Nous venons d’évoquer la forme générale du miroir, abordons à présent son état de surface. Comprenons: La façon dont le miroir est lisse. Cela se passe à présent au niveau microscopique. Lord Rayleigh a dit qu’une image de diffraction était obtenue si et seulement si l’objectif d’une lunette ou d’un télescope produit des sphères d’onde lumineuse espacées au maximum de Lambda/4. Lambda étant la longueur d’onde de la lumière incidente. 560nm pour la couleur jaune par exemple. L’image de diffraction garantit la résolution de votre instrument. Ce critère n’est pas le même pour le rouge que pour le bleu. Pour comprendre ce critère, j’utilise un petit schéma tiré de l’excellent site de Serge Bertorello http://serge.bertorello.free.fr/. La figure ci-dessus illustre le front d’onde traversant un objectif ayant un défaut de Lambda/4. On voit clairement que le front d’onde résultant est altéré, mais pas suffisamment pour empêcher l’image de diffraction de se produire. Si le défaut sur la lentille avait été plus important que Lambda/4, l’image de diffraction de l’étoile serait altérée. Seulement voilà: Si on prend la longueur d’onde du jaune (valeur communément admise pour ce critère), la valeur est de 560nm. Ce qui revient à dire que le plus petit défaut doit être inférieur à 140nm. Autant dire que c’est infime. Et puis ce critère est valable pour le jaune, mais le bleu profond a une longueur d’onde de 450nm. Le critère tombe donc à 112nm. Un télescope aura donc des performances moindres dans le bleu que dans le jaune. Lorsque l’on achète un miroir industriel, ce dernier est garantit "diffraction limited”, ce qui signifie que son fabricant garantit que l’image de diffraction est obtenue. C’est un critère assez relatif finalement puisque votre miroir peut aussi bien être à lambda/4 que lambda/16. Mais c'est un minimum. Pour obtenir de meilleures images, il est recommandé d'acquérir des miroirs avec une meilleure finition de leur état de surface. Vous l’avez compris. 140 nm c’est très très peu (800 fois plus fin qu’un cheveu), donc obtenir mieux que cela revient bien évidemment plus cher. Mais c’est important. Certains fabricants proposent l’option, d’autres non et c’est pourquoi les amateurs avertis se tournent vers des artisans pour l’obtention d’un miroir de qualité. L’image ci-dessous tirée du site d’un fabricant de télescope illustre la différence sur Saturne entre des miroirs polis à Lambda/4, Lambda/6, Lambda/8 et Lambda/10. Personnellement, je trouve cette illustration du constructeur un peu exagérée, mais l’idée est là quand même. Le traitement de surface et réflectivité Dans un télescope de newton, il y a deux miroirs. La réflectivité courante d’un miroir industriel est d’environ 93%. Ceci signifie que 93% de la lumière qui atteint le miroir est réfléchie, le reste est perdu. Or sur un télescope de newton, nous avons 2 miroirs. Donc la réflectivité totale (on peut parler de rendement) est de 86%. Sur des miroirs industriels on perd donc 14% de la lumière. Ce n’est pas rien! Certaines optiques sont traitées et aluminées avec des réflectivités à 96%, voire 99% dans de rares cas. 96% est une réflectivité courante pour des miroirs artisanaux ou industriels de bonne qualité. Le rendement passe alors à 92%. C’est nettement mieux, mais c’est plus cher. Évidemment. Ensuite, il faut savoir que l’aluminure a une durée de vie allant de 10 à 30 ans. Certains traitements de surface permettent de garder une aluminure avec un taux de réflectivité optimal plus longtemps. On trouve le traitement au SiO2 qui est un standard même industriel, mais aussi ZrO2, ou des traitements hydrophobes rendant les miroirs moins sensibles à la corrosion. Le barillet Un miroir c’est lourd, et plus le diamètre est important, plus il sera lourd. Ce miroir sera posé dans le fond du télescope dans une cellule qui permet grâce à un système de vis de le collimater. On appelle cette cellule, le barillet. Le télescope repose dans cette cellule sur trois points de contact. C’est un barillet à 3 points. Pour des miroirs de moins de 200mm qui ont une épaisseur de 30mm environ, cela ne pose “pas trop” de problème. Pour les miroirs plus grands, malheureusement pour des raisons évidentes de poids, l’épaisseur n’est pas forcément plus grande. Le miroir peut alors plier littéralement sous son propre poids, à l’échelle microscopique tout de même. Mais souvenez vous plus haut lorsque nous évoquions l’état de surface et les 140nm pour atteindre le Lambda/4. Eh bien sachez que malheureusement pour des miroirs de plus de 300mm s’ils font 30mm d’épaisseur, ces miroirs se plient dans des proportions proches des 35nm. Il est inutile donc d’avoir un miroir poli à Lambda/20 si on dispose d’un tel barillet! Voici un exemple d’un barillet 3 points. Quelle solution? Multiplier le nombre de points de contact du miroir dans son barillet en les positionnant astucieusement sous le miroir (pas sur les bords). En procédant ainsi, on diminue l’effet du poids du miroir sur sa déformation. Un classique dans le commerce c’est le barillet neuf points: On peut même pousser plus loin en utilisant 18 points de contact Il existe un logiciel qui permet de dimensionner un barillet en fonction de la taille, l’épaisseur et le matériau d’un miroir. Ce logiciel s’appelle PLOP et simule la déformation du miroir et la quantifie. L’idée n’est pas de l’utiliser pour savoir quel télescope acheter, mais juste de vous illustrer la différence entre plusieurs types de barillets grâce à un simulation trouvée dans une discussion du forum https://www.webastro.net Les valeurs sont données en mm et il est intéressant de regarder la valeur du P/V (Peak to Valley). C’est l’écart maximal entre le creux et le sommet de la déformation. Pour le barillet 3 points, on est à 2.85x10e-5mm soit 28.5nm ce qui correspond à lambda/16. C’est déjà bien. Mais si le miroir est poli à Lambda/20 c’est insuffisant! Un barillet 6 points sera nettement plus adapté. Notez aussi comment finalement le barillet 9 points semble moins bien faire le travail que le barillet 6 points… Bref, tout est histoire de conception. Mais un bon barillet est important pour celui qui souhaite tirer le meilleur de son miroir. Le ventilateur de mise en température Sous le barillet on trouve parfois un petit ventilateur qui aide à la mise en température du télescope. Il est dit qu’il permet de diminuer de moitié le temps de mise en température. Je suis sceptique. Pour qu’il soit efficace, il faut que la circulation d’air soit possible. Généralement c’est un faible surcoût, et si le télescope que l’on achète dispose d’un barillet neuf points, il y a de forte chance pour que le ventilateur soit livré avec. Le carbone Comme pour une lunette, il est possible d’obtenir un corps en carbone. A mon sens c’est encore plus important que pour une lunette. Les raisons sont les mêmes, mais le tube étant drastiquement plus long, la dilatation totale d’un tube aluminium sera plus grande éloignant alors le primaire du miroir du secondaire et changeant la mise au point au cours d’une nuit froide. Le tube carbone sera également plus léger, ce qui est mieux pour la monture et plus rigide permettant d’assurer que quelque soit sa position il ne ploie pas sous le poids de l’oculaire ce qui modifierait la collimation et les réglages. C’est assez cher par contre (comme toujours). La mise au point et le porte oculaire On retrouve les mêmes arguments que pour une lunette. Le choix d’un porte oculaire se fait sur les oculaires qu’il peut accepter (1,25” ou 2”), sur le mécanisme (à crémaillère ou Crayford) sur le poids qu’il peut soutenir, sur la présence ou non d’une démultiplication, etc… D’autres éléments peuvent entrer en compte (les anneaux, une araignée en carbone, une platine de fixation Losmandy ou Vixen…) Comme pour les lunettes, on y ajoutera des accessoires (oculaire, laser de collimation, bande chauffante pour secondaire, vis de réglage du secondaire moletées…) qui feront qu’un télescope de newton de 200/800 peut aussi bien coûter 650€ que 1500€ voire plus. Conclusion Sans avoir été exhaustif, j’espère que ce document vous permet d’y voir un peu plus clair dans les prix et les options proposées par les vendeurs sur les lunettes ou les télescopes. Gardez bien en tête une chose: Si vous pratiquez l’astronomie en dilettante ce n’est pas la peine d’opter pour un télescope de newton en carbone avec un miroir d’artisan. Honnêtement les télescopes industriels sont déjà très très bien! De même si vous souhaitez opter pour une lunette et ne faire que du visuel, vous n’avez pas besoin d’un triplet! Un doublet suffira largement. Gardez aussi votre argent pour les accessoires. De bons oculaires sont au moins aussi importants qu’un bon instrument! Bertrand
  3. Tu as peut être raison. C'est incomplet. Je ne voulais juste pas balancer un pavé de 15 pages puisqu'il y a tellement a dire ...
  4. Je ne suis pas certain de comprendre le débat. Justement je dis dans le premier paragraphe que c'est un sujet dans lequel je ne souhaite pas aborder tous ces points. Mais plutôt les différentes options d'achats sur une lunette de 80mm ou un newton de 200mm. A la rigueur je n'aurai même pas dû mettre ce tableau @MCJC éventuellement les montures ca peut faire l'objet d'un autre article...
  5. Oui et puis je trouve que le Dobson au mileu des autres formules optique alors que c'est une monture c'est bof... Je vais voir a mettre autre chose...
  6. Les conditions étaient bonne hier soir. Je suis sur que je peux faire mieux lorsque je vois les photos des autres. Camera zwo asi290mm Filtre optilong 685nm Sw 250/1200 Barlow x3 Z'en pensez quoi? Je ne sais pas s'il faudrait pas que je fasse de films plus courts pour JuJu. Là je suis à 1min. 5 films et dérotation winjupos. Ou carrément dérotationner un long SER?
  7. Ok, c'est un classique, mais je ne l'avais jamais vraiment faite correctement. 5h de pose en 300x 1' (je ne décrâme pas le coeur, c'est un choix elle est comme ça!) Filtre optolong L-pro Camera ASI 294MC Pro Lunette Vixen FL55SS + réducteur Ca pourrait être sympa de rajouter une petite couche H-alpha dessus non?
  8. WR 134 depuis la corse au 360

    Superbe!
  9. Bon, je vais être franc, je ne suis pas super super content de moi, en même temps je n'ai que 1h20 de pose sur cette objet avec ma petite lunette fluorite de 55mm (focale résultant 239mm) Filtre Optolong L-pro Je me suis retrouvé avec un max d'étoiles sur l'image, j'ai cherché comment faire une réduction avec The Gimp et j'ai trouvé une méthode avec les ondelettes, et je pense que cela crée de drôles d'artefacts. Si quelqu'un se sent chaud de traiter, je peux lui envoyer le .fit qui est finalement assez propre. https://transfert.free.fr/0aAUSV Bref. Voilà l'image que je trouve assez dure
  10. Merci à toi surtout!! Je viens de te l'envoyer
  11. 59 tuiles, j'ai du mal à descendre en dessous... SW 250/1200 barlow ES x2 ASI290MM Filtre ir 685nm
  12. Un grand merci à tous pour vos retours. Oui c'est du taffe, mais c'est très amusant à faire. :-)
  13. Nébuleuse de l'Aigle

    Merci à tous, J'essaierai de rajouter une ou deux d'expositions dans l'été pour voir ce que cela peut donner
  14. Un classique à cette période de l'année. J'espérais sortir un peu plus de bleu, mais bon... 1h15 de pose en 37x2' à la lunette ESPRIT 100 Filtre Optolong L-Pro Asi 294MC Pro J'espère qu'elle vous plaira!
  15. Conditions légèrement meilleures le 2 juillet que le 1er, mais la Lune reste basse quand même SW 250/1200 Barlow ES Filtre Optolong IR pass 685nm ASI 290MM 19 tuiles assemblées avec Hugin
  16. Pas évident de faire un mosaïque finalement sur cette phase, elle est basse et elle turbule beaucoup cette lune! 10 tuiles au SW250/1200 + Barlow ES + ASI290MM
  17. Mosaique de la lune du 1er Juillet

    J'aime presque autant la version sous échantillonnée sans la barlow. Qu'en pensez vous?
  18. Bon, toujours dans le but de tester mon nouveau tube, je me suis lancé dans un mosaïque lunaire le 10/06. Plutôt bon seeing, mais je ne sais pas comment je me suis débrouillé pour avoir autant de tuiles: 82! oui oui 82! Hard à assembler N'hésitez pas à zoomer c'est fait pour! Newton Skywatcher 254/1200 caméra ZWO ASI 290MM filtre optolong IR Pass. Cela représente 2h de prises de vue et plus de 24 heures de traitement et de composition. https://photos.app.goo.gl/TeQET2c6AKsuEoRY9
  19. mosa lune au C14

    Elle est très bien aussi cette mosaïque. Au C14, ca commence à faire du boulot aussi!
  20. Mosaique lunaire au SW 250/1200

    Ce qui me rassure, c'est qu'il ne marche pas mal ce tube alors!
  21. Mosaique lunaire au SW 250/1200

    Je pense que mon écran est mal réglé.. C'est mieux là?
  22. Mosaique lunaire au SW 250/1200

    C'est mieux là?
  23. Je vends mon C8 XLT parce que je passe au diamètre supérieur. C'est une version de 2012. Excellent état, il produit de très bonnes images, le porte oculaire 31,75 a légèrement souffert mais il fonctionne encore très bien. shifting contenu, cela ne m'a jamais vraiment gêné - tube + chercheur point rouge + porte oculaire 1"25 + pare buée Astrozap + Caisse rangement rembourée "maison" => 625€ - porte oculaire 2" spécial SCT=> 15€ +5€ FDP - Bande chauffante réglable 12V => 60€ + 5€ FDP - deuxième barre vixen réversible spéciale C8 avec étriers (pour fixer une lunette guide) => 60€ + 7€FDP - Bague adaptation SCT -> M48 pour la photo grand champs=> 18€ + 2€ FDP - Réducteur de focale 0,63x ANTARES =>70€ + 5€FDP l'ensemble 800€ Je donne en sus un masque de Bathinov en mauvais état mais toujours utilisable pour l'achat du tube A venir chercher sur place à Versailles. Envoi possible du tube sous double emballage pour 50€ en Colissimo avec assurance
  24. Bon, unecible facile pour commencer et regarder ce qui ne va pas. A l'évidence, j'ai du croper pas mal car je n'ai pas de correcteur de coma. Pas mal de rejet aussi car la monture a aussi un peu de mal à suivre, ce n'est pas facile a équilibrer! 1h de pose donc avec ce nouveau SW 254/1200 sur EQ6-R pro et ASI 294MC Pro