Contacter l'auteur / Contact the author

Recherche dans ce site / Search in this site

 

Les découvertes de Gaia

Gaia scrutant la Voie Lactée. Document T.Lombry.

État de la recherche en astrophysique

Gaia est un satellite astrométrique de l'ESA du programme Horizon 2000+ qui fut lancé le 19 décembre 2013 pour une mission de 5 ans qui devrait se terminer en 2020. Gaia poursuit la tâche commencée par le satellite Hipparcos (1989) et a pour but de mesurer les paramètres de plus d'un milliard d'objets célestes (astéroïdes, exoplanètes, étoiles, amas ouverts et galaxies) jusqu'à la magnitude 20. L'analyse de ces données va permettre de caractériser et cartographier en détails le système solaire, la Voie Lactée et l'univers proche et d'améliorer nos connaissances concernant la structure et l'évolution de ces systèmes.

Gaia est placé sur le point de Lagrange L2 et est constitué de deux télescopes dont les images sont intégrées et de trois instruments (astrométrie, spectrophotométrie et spectromètre). A terme, Gaia devrait enregistrer quelque 100 TB de données dont le catalogue final est attendu pour 2022. Plusieurs versions intérimaires ont été publiées entre-temps, dont un catalogue partiel en 2016 (DR1) et en 2018 (DR2).

Certaines découvertes concernant notamment la Voie Lactée ont été intégrées dans les articles de ce site. Toutefois, les découvertes se succédant et étant très diverses, les résultats majeurs sont décrits ci-dessous.

Flambée de formation stellaire dans le disque il y a 2 ou 3 milliards d'années

Les modèles cosmologiques prédisent que la Voie Lactée aurait grandi et serait devenue plus massive en raison de sa fusion avec d'autres galaxies, un fait qui a été validé par plusieurs études exploitant les données de Gaia (voir plus bas). L'une de ces fusions pourrait être à l'origine de la flambée de formation stellaire qui laissa son empreinte dans les données de Gaia.

Distribution des 3 millions d'étoiles utilisées par l'équipe de J.R.Mor pour détecter la flambée de formation stellaire il y a 2 ou 3 milliards d'années superposée à une illustration de la Voie Lactée.

Grâces aux données de Gaia DR2, l'équipe de Juan R. Mor de l'Université de Barcelone annonça dans un article publié dans la revue "Astronomy and Astrophysics" en 2019 que la moitié des étoiles du disque mince galactique se sont formées il y a 2 ou 3 milliards d'années au cours d'un seul évènement, une flambée de formation stellaire qui résulte probablement de la collision et la fusion avec une galaxie naine satellite. Elle a également obtenu un taux de formation stellaire actuel de ~1 M/an, conforme aux observations précédentes. Ces résultats sont cohérents avec l'extinction cosmologique indiquant que la formation stellaire s'éteint aux décalages Doppler z < 1.8 soit il y a moins de 10 milliards d'années. Cette tendance décroissante fut suivie par une augmentation du taux de formation stellaire qui commença voici ~5 milliards d'années et qui se prolongea jusqu'il y a ~1 milliard d'années.

Selon Francesca Figuerars, coauteure de cet article, "en réalité, contrairement à ce que nous avions prédit avant d'avoir des données de Gaia, le pic de formation d'étoiles est si clair que nous avons jugé nécessaire de traiter son interprétation avec des experts en évolution cosmologique des galaxies externes." Selon l'expert des simulations des galaxies similaires à la Voie Lactée, Santi Roca-Fàbrega de l'Université Complutense de Madrid et également signataire de l'article, "les résultats obtenus correspondent aux prévisions des modèles cosmologiques actuels, et en plus notre Galaxie vue des yeux de Gaia est un excellent laboratoire cosmologique où nous pouvons tester et confronter des modèles à une plus grande échelle dans l'univers."

Pour obtenir ces résulats, les chercheurs ont utilisé les données de magnitudes, couleurs et de parallaxes de 3 millions d'étoiles proches du Soleil dont une cartographie est présentée à gauche, complétées par la relation IMF (la fonction de masse initiale qui décrit la distribution des masses des étoiles pour une population stellaire nouvellement formée) et un modèle SFH (Star Formation History) de l'histoire de la formation stellaire non paramétrique (non basé sur des statistiques) pour le disque galactique. Cette analyse a été réalisée en combinant les simulations du Modèle galactique de Besançon (BGM FASt) et un algorithme de calcul probabiliste (bayésien) approximatif. De plus, la modélisation dans le Modèle de Besançon combinée aux données de parallaxes extraites de Gaia a permis aux chercheurs de mieux contraindre les modèles SFH et la relation IMF.

À partir de leur meilleur modèle, les chercheurs estiment qu'environ 50% de la masse utilisée pour générer des étoiles tout au long de la vie du disque mince galactique fut dépensée au cours de ces quatre milliards d'années. L'échelle de temps et la quantité de masse stellaire générée au cours de cette période qui représente des dizaines de milliards de masses solaires, suggère que son origine n'est pas intrinsèque au disque. En fait, une perturbation externe est nécessaire pour expliquer cette flambée d'activité stellaire.

La fusion avec une galaxie riche en gaz satellite de la Voie lactée aurait pu apporter cette matière première et réactiver le processus de formation stellaire, comme de l'oxygène réactive un feu. Ce mécanisme expliquerait la répartition des distances, des âges et des masses estimés à partir des données extraites de Gaia.

A voir : Fusion de galaxies spirales, UCSC/NASA

Sursaut de formation stellaire dans le LMC

Nous avons expliqué que le Grand Nuage de Magellan (LMC) contient plus de 900 objets astronomiques parmi lesquels des centaines de nébuleuses brillantes, des étoiles variables, le résidu d'une supernova (Sanduleak) et même un pulsar qui viennent s'ajouter aux 20 milliards d'étoiles en majorité des géantes chaudes (classes O et B).

Taux de formation stellaire de la Voie Lactée et du LMC basé sur les données de Gaia et du sondage SDSS. Document D.Nidever et al. (2019).

Si le LMC paraît assez calme de nos jours, grâce aux données de Gaia et du sondage SDSS, les astronomes ont découvert que cela n'a pas toujours été le cas.

Pour estimer le taux de formation stellaire de nos deux galaxies satellites (LMC et SMC), les chercheurs ont réalisé des spectres de 3200 géantes rouges des deux Nuages de Magellan. En mesurant la composition chimique de ces étoiles, les astronomes ont pu déduire leur histoire stellaire et déterminer approximativement l'époque à laquelle elles se sont formées. Ensuite, à partir de ces données ils ont pu estimer le taux de production stellaire au cours du temps.

La reconstruction a été possible en raison de la différence de durée de vie des étoiles de chaque classe spectrale et du rôle que jouent les étoiles plus massives quand elles explosent en supernovae dans l'enrichissement des galaxies en éléments lourds. Les nouvelles générations d'étoiles se forment à partir du gaz enrichi et héritent de cette composition chimique. Le processus se répètent au rythme des générations stellaires. Les étoiles de faible masse ont pu survivre plus longtemps et préserver dans leur composition l'histoire de l'enrichissement de leur galaxie. En cartographiant les abondances de ces étoiles (notamment H et Fe), les astronomes sont parvenus à lire les archives des formations stellaires des Nuages du Magellan.

Les résultats de cette étude publiée en 2019 par David L. Nidever de la NOAO et ses collègues montrent que l’histoire de la formation stellaire des deux Nuages de Magellan est très différente de celle de la Voie Lactée. Comme on le voit dans le graphique présenté ci-dessus, dans la Voie Lactée le taux de formation d'étoiles débuta de manière explosive et déclina progressivement. En revanche, dans les Nuages de Magellan, au début les étoiles se sont formées extrêmement lentement, à un taux de seulement 1/50e de celui de la Voie lactée, puis ce taux est monté en flèche au cours des 2 derniers milliards d'années et est encore de nos jours supérieur à celui de la Voie Lactée qui produit à peine une étoile par an.

Selon Nidever, le sursaut spectaculaire du taux de formation stellaire est dû aux interactions gravitationnelles entre les Nuages de Magellan et la Voie Lactée : "les Nuages de Magellan ont commencé leur vie dans une partie relativement isolée de l'univers, où il n'y avait aucune raison de former des étoiles. Mais au cours des derniers milliards d'années, les interactions étroites entre les deux Nuages et avec la Voie Lactée ont provoqué la transformation du gaz en étoiles."

Comme nous le verrons à propos des interactions entre galaxies, au cours des prochains milliards d'années, les Nuages de Magellan fusionneront avec la Voie lactée. À mesure que la fusion progressera, le taux de formation stellaire dans les Nuages de Magellan devrait atteindre un niveau uniforme. Ensuite, dans environ 2.5 milliards d'années, le Grand Nuage de Magellan sera entièrement absorbé par la Voie lactée, processus qui sera marqué par une explosion de formation d'étoiles. Si nos voisins les plus proches ont peut-être démarré lentement, des temps passionnants les attendent !

Les débris de Gaia-Encélade

Après avoir étudié pendant 22 mois sept millions d'étoiles de la Voie Lactée grâce à Gaia, une équipe d'astronomes dirigée par Amina Helmi de l'Université de Gröningen aux Pays-Bas a découvert que 30000 étoiles faisaient partie d'un même groupe qui se déplaçait à travers la Galaxie. En terme de couleur et de luminosité, les étoiles de ce groupe occupent une place particulière dans le diagramme H-R témoignant qu'il s'agit clairement d'une population distincte.

Illustration artistique des débris de la galaxie Gaia-Encélade qui fusionna avec la Voie Lactée il y a 10 milliards d'années et dont on trouve des débris dans toute la Galaxie. Document ESA/A.Helmi et al. (2018).

En analysant ces données surprenantes, Helmi et ses collègues ont tout de suite soupçonné que ces étoiles avaient un rapport avec l'histoire de la formation de la Voie lactée. En effet, par le passé Helmi et son groupe de recherche avaient réalisé des simulations informatiques pour étudier l'évolution des étoiles lors d'une fusion entre deux grandes galaxies. C'est en comparant cette simulation aux données de Gaia que les chercheurs ont constaté que les résultats simulés correspondaient aux observations.

Dans un article publié dans la revue "Nature" en 2018, Helmi déclara que "la collection d'étoiles que nous avons trouvée avec Gaia possède toutes les propriétés qu'on peut attendre des débris d'une fusion galactique". En d'autres termes, ce groupe d'étoiles faisait autrefois partie d'une autre galaxie qui fut absorbée par la Voie lactée. Ces étoiles forment à présent l'essentiel du halo interne de la Galaxie - une composante diffuse formée à une époque très ancienne et qui entoure à présent l'essentiel de la Voie Lactée.

Selon les simulations de l'équipe d'Helmi, en plus d'alimenter les étoiles du halo, la galaxie accrétée aurait également perturbé les étoiles préexistantes de la Voie Lactée et contribuèrent à la formation du disque épais. Sachant que les étoiles qui se forment dans les différentes galaxies ont des compositions chimiques uniques qui correspondent aux conditions de la galaxie d'origine, si ce groupe d'étoiles représente bien les débris d'une galaxie qui a fusionné avec la nôtre, les étoiles restantes devraient conserver une empreinte dans leur composition. Mais avant de conclure, les astronomes devaient compléter les données de Gaia avec celles sur la composition chimique des étoiles fournies par le sondage Apogée. C'est effectivement ce qui fut observé.

Les astronomes ont appelé cette galaxie "Gaia-Encelade" par référence au nom de l'un des géants de la mythologie grecque qui donna naissance à Gaia (Gaïa en français), la Terre et à Uranus, le Ciel. Helmi nous rappelle que "selon la légende, Encélade aurait été enseveli sous l'Etna, en Sicile, et serait responsable des tremblements de terre locaux. De même, les étoiles de Gaia-Encélade ont été profondément enfouies dans les données de Gaia et elles ont ébranlé le disque épais de la Voie lactée".

Même si aucune preuve supplémentaire n'était vraiment nécessaire, les chercheurs ont également trouvé des centaines d'étoiles variables et 13 amas globulaires dans la Voie Lactée qui suivent des trajectoires similaires à celles des étoiles de Gaia-Encélade, indiquant qu'ils faisaient partie de ce système. Le fait que tant de groupes puissent être liés à Gaia-Encélade est une autre indication du fait que cette galaxie dût être autrefois une grande galaxie, avec sa propre population d'amas globulaires.

A voir : Merger in the early formation stages of our Galaxy, ESA

Localisation et parallaxe (une mesure de leur distance) des étoiles du groupe Gaia-Encélade découvert dans la Voie Lactée. Les valeurs pourpres indiquent les étoiles proches et les jaunes les plus éloignées. Les cercles blancs indiquent l'emplacement des amas globulaires qui suivent la même trajectoire que les étoiles de Gaia-Encélade. Les étoiles variables associées au groupe Gaia-Encélade sont indiquées par les symboles bleus. Document ESA/Gaia/A.Helmi et al. (2018).

Une analyse plus poussée révéla que cette galaxie avait à peu près la taille de l'un des Nuages de Magellan. Cependant, il y a dix milliards d'années, lorsqu'eut lieu la fusion avec Gaia-Encélade, la Voie Lactée était beaucoup plus petite, le rapport entre les deux étant de 4:1. C'était donc clairement une collision majeure pour la Voie Lactée.

Grâce à Gaia, les astronomes ont également découverts l'empreinte d'autres collisions.

La Saucisse de Gaia : une collision majeure qui changea la Voie Lactée

Dans une étude publiée en 2018 par l'équipe de Vasiuly Belokurov de l'Université de Cambridge (GB) dans les "MNRAS", (en PDF sur arXiv) sur base d'un relevé partiel réalisé par Gaia des paramètres de 7 millions d'étoiles proches du Soleil, les chercheurs ont découvert que la distribution de ces étoiles n'était pas régulière, la plupart présentant des trajectoires très radiales et des vitesses élevées qui les ont conduites très près du centre de la Galaxie. C'est un signe révélateur que la Voie Lactée fut percutée par une galaxie naine placée sur une orbite très excentrique qui scella son destin.

Comme on le voit ci-dessous, la distribution de ces étoiles (en rouge) est le résultat d'une collision survenue il y a 8 à 10 milliards d'années entre la Voie Lactée et une petite galaxie surnommée "Saucisse" (Sausage en anglais) en raison de la distribution caractéristique des étoiles. Celles-ci gravitent à peu près toutes à la même distance du centre de la Galaxie. On observe également des demi-tours impliquant que la densité dans le halo stellaire de la Voie Lactée diminue considérablement à l'endroit où les étoiles inversent leur course. Ce phénomène de "U-Turn" typique d'une relaxation avait déjà été prédit en 2013 par Alis Deason de l'Université de Durnham qui avait suggéré qu'il était associé à un évènement d'accrétion massif très ancien (cf. A.Deason et al., 2013). Sa prédiction s'est avérée correcte.

A gauche, lorsqu'on analyse la distribution des vitesses des étoiles de la Voie Lactée, on constate qu'elles ont conservé l'empreinte de la galaxie "Saucisse" (Sausage), surnom donné en raison de sa forme caractéristique allongée. Cette forme unique résulte des rapides mouvements radiaux des étoiles. Étant donné que le Soleil se trouve au centre de cet énorme nuage d'étoiles, la distribution n'inclut pas les étoiles lentes qui font actuellement demi-tour vers le centre de la Galaxie. A droite, illustration artistique de l'aspect de la Voie Lactée et de la petite galaxie "Saucisse" avec laquelle elle entra en collision il y a  8 à 10 milliards d'années. L'enregistrement de cette rencontre a été préservé dans les vitesses et la chimie des étoiles. Documents V. Belokurov et al. (2018) et ESO/Juan Carlos Muñoz.

Cette collision déforma la structure de la Voie Lactée, tant son bulbe que le halo. La galaxie naine n'a pas survécu à l'interaction et s'est rapidement disloquée, ses constituants étant aujourd'hui éparpillés tout autour de nous sous forme d'étoiles animées de vitesses radiales élevées. Ces étoiles sont ce qui reste de la dernière fusion majeure de la Voie Lactée.

Ceci dit, comme nous l'avons expliqué, la Voie Lactée continue d'entrer en collision avec d'autres galaxies, notamment avec la galaxie naine du Sagittaire, SagDEG. Toutefois, la galaxie de la "Saucisse" était beaucoup plus massive. Sa masse totale (virielle) en gaz, étoiles et matière noire a été estimée à environ 50 milliards de masses solaires, soit 500 fois supérieure à celle de la galaxie naine SagDEG.

Sur base de simulations de cette fusion réalisée par Denis Erkal de l'Université de Surrey et coauteur de l'étude, les chercheurs ont conclu que la masse importante de ce mergeur provoqua beaucoup de "dégâts" et de perturbations. Les étoiles suivant des orbites très allongées, le disque de la Voie Lactée s'est probablement épaissi ou s'est même fracturé suite à l'impact et a dû être reconstruit au fil des interactions gravitationnelles. Les débris de la galaxie naine s'étant éparpillés tout autour des parties internes de la Voie Lactée, ils ont accentué voire même créé le bulbe central Galactique et le halo stellaire environnant car cette galaxie était assez massive pour amener avec elle près d'une dizaine d'amas globulaires comme le confirma cette autre étude publiée par l'équipe de G.C. Myeong en 2018.

Une onde dans la Galaxie

Selon une étude publiée en 2018 dans la revue "Nature" (en PDF sur arXiv) et résumée sur le site de l'ESA, il semble qu'en frôlant la Voie Lactée il y a entre 300 et 900 millions d'années, la galaxie naine du Sagittaire généra une onde de densité dans le disque galactique qui pertuba les déplacements de millions d'étoiles.

Grâce au satellite Gaia, après avoir comparé l'altitude de quelques millions d'étoiles par rapport au plan galactique et en estimant leurs vitesses dans les trois dimensions (l'espace des phases) afin de déterminer géométriquement leurs mouvements, Teresa Antoja de l'Université de Barcelone et ses collègues ont découvert que la distribution des étoiles dans l'espace de phase du disque galactique contient d'innombrables sous-structures de formes diverses, dont la plupart n'ont jamais été observées auparavant par manque de données. En résumé, quand on reporte les positions et vitesses des étoiles dans un diagramme de phase comme on le voit ci-dessous à droite, on constate que les étoiles s'alignent en formant une onde en spirale.

A gauche, simulation du motif en spirale imprégné dans la vitesse des étoiles de la Voie Lactée. Cliquer sur l'image pour lancer l'animation (GIF de 7 MB). A droite, distribution des étoiles de la Voie Lactée dans le plan vertical position-vitesse (Z-Vz, par rapport au plan galactique). Documents ESA et T.Antoja et al. (2018).

A la différence des molécules d'eau qui inventent sans cesse des motifs ondulés, les étoiles conservent une sorte de "mémoire" de l'objet qui les a perturbé. Cette empreinte se trouve dans leurs mouvements. Après un certain temps qui se compte en centaines de millions d'années, bien que les ondulations s'amortissent et qoient moins visibles, en caractérisant suffisamment d'étoiles on peut encore détecter cette perturbation dans la répartition des étoiles en analysant leurs vitesses.

Les chercheurs ont réexaminé des travaux antérieurs portant sur ce "mélange de phases" dans le domaine astrophysique mais également en physique quantique. Bien que personne n'ait encore étudié ce phénomène dans le disque de la Voie Lactée, les structures découvertes rappellent clairement ces phénomènes spiralés qui correspondent exactement aux cas d'écoles décrits dans les manuels comme la simulation présentée ci-dessus à gauche.

Enfin, grâce à Gaia, en 2018 les astronomes ont découvert trois nouveaux amas ouverts dans la Voie Lactée. On y reviendra.

Gaia n'a pas fini de nous surprendre.

Retour à l'Astrophysique


Back to:

HOME

Copyright & FAQ