almak

Newton dédié LUNE et PLANÈTES 👌

Recommended Posts

La question semble être plutôt : pour une longueur physique maximale qui soit pratique, vaut il mieux un petit diamètre peu obstrué ou un gros diamètre plus obstrué ?

Share this post


Link to post
Share on other sites
Advertising
By registering on Astrosurf,
this type of ad will no longer be displayed.
Planetary Astronomy
Observing, imaging and studying the planets
A comprehensive book about observing, imaging, and studying planets. It has been written by seven authors, all being skillful amateur observers in their respective domains.
More information on www.planetary-astronomy.com

Sur l'effet de l'obstruction sur le site de T. Legault:

extrait:

"Pourtant, on entend parfois des affirmations catégoriques telles que : " l'obstruction diminue fortement le pouvoir de résolution ", " un instrument obstrué perd 50 % de ses capacités " " un instrument obstrué à 30 % est inutilisable en haute résolution ", ou "l'obstruction a moins d'effets en CCD qu'en visuel". Affirmations très excessives car contredites par les lois de la diffraction et par des expériences menées avec un minimum de rigueur. Lorsque ces opinions sont issues d'une comparaison entre instruments sur le terrain, elles relatent certes une expérience réellement vécue mais elles expriment les effets d'autres facteurs que l'obstruction : principes optiques différents, sensibilité à la turbulence différente, diamètres différents, qualités optiques différentes, grossissements différents, réglages différents, etc. En particulier, la plupart des télescopes en service souffre de décollimation (même si leurs propriétaires pensent le contraire), ce qui provoque un effondrement des performances bien supérieur aux dommages causés par l'obstruction (cf. La collimation). Le seul moyen valable d'observer les effets réels de l'obstruction est d'utiliser un unique instrument (lunette ou Newton faiblement obstrué) que l'on obstrue artificiellement à l'aide de disques en métal de diamètres variés, afin de supprimer toutes les autres différences qui sont généralement prépondérantes."

 

http://www.astrophoto.fr/obstruction_fr.html#:~:text=Les effets de l'obstruction sont de deux ordres %3A la,de son obstruction en surface.

Edited by rolf
  • Like 1

Share this post


Link to post
Share on other sites

Les choses sont simples à comprendre : l'instrument parfait focalise parfaitement 100% de la lumière incidente sur toutes longueurs d'onde, n'a pas d'obstruction centrale, pas d'aigrettes de diffraction (araignée, pattes support de primaire voire de secondaire), pas de chromatisme, pas de soucis de reflets.

Et pas de bol, l'instrument parfait, ça n'existe pas. 

 

En visu, c'est une évidence, moins on a d'obstruction mieux c'est (sinon personne de sensé n'achèterait d'APO  de 150 mm à 10000 Euros !). Et c'est valable pour tout diamètre de télescope.

 

Après il y a l'aspect pratique... Et en effet de toute façon l'instrument sera au final un compromis entre toutes les contraintes. Un Newton, c'est simple et pas cher (à qualité optique égale) mais ça devient vite encombrant et inconfortable pour de grand F/D potentiellement très peu obstrués. Et il y aussi les aigrettes dûes à l'araignée du secondaire. On peut utiliser des branches courbes (mais avec un étalement un peu supérieur de la tâche de diffraction)  ou une lame de fermeture (mais cela introduira un peu de chromatisme)

 

Perso, avec le recul de toutes mes années d'astro., je pense perso. que le Newton donnant le meilleur compromis poids / encombrement / réalisation mécanique / champ de netteté (sans correcteur de champ) / obstruction est le standard des années 70 / 80 / 90 soit un F/D de 6.  Avec une obstruction de 15 à 20%, selon le champ de pleine lumière nécessaire. Et 15% pour du visuel pur sans hésiter !

 

Albéric

Edited by xs_man
  • Like 2

Share this post


Link to post
Share on other sites
il y a 38 minutes, rolf a dit :

ou "l'obstruction a moins d'effets en CCD qu'en visuel". Affirmations très excessives car contredites par les lois de la diffraction et par des expériences menées avec un minimum de rigueur.

Non

Les caractéristiques complexes de la vision humaine font que l'obstruction a un effet certain en visuel.

Hypothèse soutenue et vérifiée depuis des lustres.

Encore récemment :

1985LAstr__99__125V-van-verroij.pdf

Et pas besoin d'APO à 10 000 €, les apo c'est pour la photographie ou ;) pour ceux qui n'aiment pas le bleu.

Edited by lyl
  • Like 1

Share this post


Link to post
Share on other sites

L'obstruction et la qualité des optiques a une moins grande influence en imagerie qu'en visuel dans la mesure où pour compenser, il suffit juste de pousser un peu plus les curseurs. Entre une optique industrielle correcte et un miroir d'artisan de compétition, le traitement rattrapera  la différence.

Évidemment si les optiques sont de mauvaise qualité, là l'imagerie ne fera pas de miracles...

 

Albéric

Share this post


Link to post
Share on other sites

Merci Halfie, très intéressant. On voit bien l'impact sur la finesse des détails.

 

Mais j'ai l'impression par contre qu'il manque l'aspect d'assombrissement des images  ?

A 50% d'obstruction on perd beaucoup de lumière,  là la luminosité est identique ??

 

Albéric

Share this post


Link to post
Share on other sites

Un petit détail intéressant, sur les faibles obstructions en visuel.

Quand l'obstruction augmente, le rayon du premier cercle de diffraction diminue.

L'énergie est transférée aux anneaux

C'est quand l'intensité surfacique transférée devient supérieure au contraste minimum admissible que l’œil perd la résolution des détails peu contrastés. Une caméra s'en sort "différemment", la composition et le traitement d'image permet d'utiliser des faibles contrastes

 

La partie théorique a été mise en évidence par Virendra N. Mahajan, c'est un niveau de détail peu connu par les non initiés mais connu de longue date. D'une manière générale la résolution augmente (c'est négligeable) puis baisse brutalement en fonction du seuil de contraste discernable préalablement fixé : c'est lorsque le premier anneau devient suffisamment brillant pour "fusionner avec le disque d'Airy principal" Danjon l'exprime dans les paragraphes sur la description des aberrations "Lunettes et Télescopes" 1935 Chap III §16 p54 :

Citation

 

La théorie des détails planétaires est d'une grande complexité, on vient de le voir, car elle fait intervenir simultanément les propriétés des instruments et celles de l’œil.

Résumons les deux derniers paragraphes.

La diffraction rend floues les limites entre les plages d'inégales brillance, elle adoucit les contours, elle abaisse les contrastes, surtout ceux des petites plages, qui sont nivelées. Plus l'objectif est petit, moins l'image est vigoureuse. L'acuité visuelle dépend à la fois du contraste des taches étudiées, de la brillance de la planète et de la clarté de l'instrument.

 

image.png.cac74bbe7c6da2e76068ad813721792c.png

https://www.telescope-optics.net/images/central_obstruction_PSF.PNG

 

Ceci posé, reste le fonctionnement de l’œil, très dépendant des observateurs.

Il est généralement admis qu'il faut des conditions de lumière optimales par rapport à l'objet. La sensibilité aux contrastes est très variable pour l’œil.

++ pour Fred Burgeot qui le rappelle à propos du diamètre, ne pas oublier qu'on a construit d'énormes réfracteurs spécialisés, jusqu'à 1m de diamètre pour du visuel mais aussi des réflecteurs. Ex. le télescope de 60cm ordonné par Baillaud au pic du midi, sujet récent...

De bonnes conditions donne un minimal 3% de contraste en laboratoire car on passe ou non un seuil des capacités de l’œil. Facteurs sur lesquels on peut jouer : variation individuelle, entrainement, grossissement utilisé.

 

Ensuite, ne pas oublier que le plus grand limiteur en résolution, c'est l’atmosphère et que pêter un 0.3/0.4" d'arc de résolution, ça n'arrive pas partout en France.

Edited by lyl
  • Like 1
  • Thanks 1

Share this post


Link to post
Share on other sites

euh... le F/D 10 c'était juste un exemple de calcul pour montrer que le champs de pleine lumière à 100% augmentait avec un focale plus longue et un secondaire plus petit,

ce qui est intéressant à noter je pense.

 

Pour l'instant je suis quasiment arrêté sur 250mm F/D7 et obstruction entre 15 et 20 %

ça se précise...:) j'attends toujours plusieurs devis d'opticiens avec ces caractéristiques...

 

non le vrai souci c'est cette couche de nuage qui m’empêche de voir la grande conjonction >:(

Share this post


Link to post
Share on other sites

quelqu'un m' fait remarqué la faute de frappe dans le titre de mon sujet:$, je ne trouve pas comment corriger cela ? merci

Share this post


Link to post
Share on other sites
Il y a 3 heures, xs_man a dit :

avec le recul de toutes mes années d'astro., je pense perso. que le Newton donnant le meilleur compromis poids / encombrement / réalisation mécanique / champ de netteté (sans correcteur de champ) / obstruction est le standard des années 70 / 80 / 90 soit un F/D de 6.

Et bien, avec mon recul à moi je pense être en plein dans le mille avec un Newton 300 à FD 4 et une obstruction de 25 %. C'est quasiment la bête à tout faire et ce dans un relatif confort.

Edited by rolf

Share this post


Link to post
Share on other sites
il y a une heure, almak a dit :

quelqu'un m' fait remarqué la faute de frappe dans le titre de mon sujet:$, je ne trouve pas comment corriger cela ? merci

Tu fais une modif du tout premier message, qui te donne accès aussi à la modif du titre ;) 

  • Thanks 1

Share this post


Link to post
Share on other sites
il y a 4 minutes, rolf a dit :

Et bien, avec mon recul à moi je pense être en plein dans le mille avec un Newton 300 à FD 4 et une obstruction de 25 %.

 

Pareil pour moi, je conserve l'obstruction à 24% avec le secondaire à 60 mm ,  f/D=6 et D=250.

 

Le champ de pleine lumière est alors de 14 mm.

 

C'est bon pour le planétaire "photographique". Je ne fais pas du visuel.

 

Et avec le réducteur ASA 0.73  j'ai encore l'option d'une seconde configuration.....

  • Like 1

Share this post


Link to post
Share on other sites
il y a 24 minutes, Marc S a dit :

C'est bon pour le planétaire "photographique". Je ne fais pas du visuel.

Excellent aussi pour le visuel.

  • Thanks 1

Share this post


Link to post
Share on other sites
il y a 37 minutes, rolf a dit :

Excellent aussi pour le visuel.

 

OK, merci

Share this post


Link to post
Share on other sites
Citation

Excellent aussi pour le visuel.

 

A F/D 4, il est parfait pour l'imagerie du CP mais ce n'est pas l'optimum en visuel.

Il faut un correcteur de champ pour exploiter correctement les oculaires à champ moyen et à grand champ.

A F/D 6 on s'en passe.

 

Albéric

Share this post


Link to post
Share on other sites
il y a 3 minutes, xs_man a dit :

Il faut un correcteur de champ

Mais ce n'est pas un problème.

Share this post


Link to post
Share on other sites
Citation

Mais ce n'est pas un problème.

 

Plus de lentilles, plus de défauts optiques.... Et plus d'obstruction.

 

Albéric

Share this post


Link to post
Share on other sites

Par curiosité si c'est pour du 100% planétaire, pourquoi à tout prix un newton plutôt qu'un cassegrain/DK/Grégory ? Est-ce que c'est pour avoir une obstruction la + faible possible ? (15-20% avec un newton c'est jouable avec un cassegrain pas évident...)

 

 

Edited by danielo

Share this post


Link to post
Share on other sites
Il y a 5 heures, zeubeu a dit :

Et entre un gros beaucoup obstrué et un gros faible obstruction on ne voit pas de différence ?

Salut Fred zeubeu,

il y a pas mal d'années je me suis fabriqué une série de disques à fixer sur mon araignée de T400 pour passer progressivement de 20% à 30% d'obstruction. Ben sur Jupiter, je n'ai pas vu de différence flagrante entre ces deux extrêmes en étant l'oeil à l'oculaire, avec un seeing moyen.

  • Like 1
  • Love 1
  • Thanks 1

Share this post


Link to post
Share on other sites
Il y a 5 heures, Adamckiewicz a dit :

La question semble être plutôt : pour une longueur physique maximale qui soit pratique, vaut il mieux un petit diamètre peu obstrué ou un gros diamètre plus obstrué ?

Sans hésiter, le gros ! Comme déjà exprimé.

  • Thanks 2

Share this post


Link to post
Share on other sites
Citation

Sans hésiter, le gros ! Comme déjà exprimé.

 

Le prix n'est pas le même... Tout dépend si c'est ou non un critère pour le choix ?

Et le prix élevé est encore plus marqué pour un "gros" à faible rapport F/D...

 

Albéric

  • Like 1

Share this post


Link to post
Share on other sites

Bonsoir Danielo,

 

le cassegrain ou Gregory ou maksutov serait certes plus compact et peut être plus pratique pour observer mais ce sera plus complexe à fabriquer , plus cher aussi ...

le but est d’aller au meilleur rapport prix/performance , et dans ce cas le newton semble imbattable .

De plus les cassegrains et autres meme s’ils ont une focale resultante importante on un miroir primaire avec f/d de 4 ou 5 donc plus difficile d’obtenir un bon miroir qu’a F/d 6 ou 7 par exemple .

Texereau le dit très bien d’ailleurs page 136 et suivantes et conseille de ne pas dépasser 20% d’obstruction si planétaire ...

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

    • By FroggySeven
      Je n'arrive pas à comprendre le schéma. Comment peut-on séparer l'image en deux en utilisant un prisme comme deux miroirs très rapprochés, alors que le faisceau ne semble pas collimaté à l'infini à ce niveau.
      Ou alors, si, il est bien collimaté à l'infini ?
      C'est moi qui comprend mal le schéma ?
       
      Question subsidiaire : ça fonctionne toujours comme cela les binos;
      avec un prisme qui "coupe" le faisceau image ?
       
      D'avance merci pour votre aide
       
       

    • By Arnaud T60
      Bonjour à tous
       
      je souhaite remplacer mon miroir secondaire sur mon tube Geoptik Formula 25. A première vue celui en place est collé . Quelle type de colle pour le nouveau serait il judicieux d'utiliser pour fixer le nouveau ??
       
      D'avance merci
      Arnaud
    • By CPI-Z
      Convertir une image front-d'onde en PSF est peut-être un sujet qui peut intéresser certains.
      WinRoddier, DFTFringe, Aberrator ... donne directement la PSF en fonction d'un front-d'onde donné. Mais comment cette PSF est construite ?
       
      Vous avez certainement déjà vu ce post où l'on voit l'influence de l'obstruction sur la tache de diffraction (PSF)
      http://www.astrosurf.com/viladrich/astro/instrument/sensitivity/spider-diffraction.htm
       
      En fin de page de ce lien vous trouverez la phrase :
      "The previous images were calculated with Iris software using the formula" : PSF = [ Module FFT (Aperture) ]^2
      Autrement dit, le module au carré de la transformée de Fourier de l'image de la pupille donne la PSF, c'est utiliser pour retrouver l'impact des obstructions des miroirs secondaires, araignée ...
       
      Alors j'ai fais le test avec IRIS (<fftd) et effectivement cela fonctionne

       
      J'ai voulu utiliser la même méthode pour un front déformé et comme WinRoddier permet de faire des simulations je suis parti d'une coma pure car la PSF est bien déformée (voir la capture d'écran WinRoddier plus loin).
      En utilisant la transformation de Fourier d'IRIS en appliquant directement la commande  <fftd sur l'image front-d'onde ci-dessous, voici ce que j'obtiens

      On est très loin du résultat escompté produit par WinRoddier et l'image ne ressemble pas à celle d'une coma.
      Je peux donc dire que dans ces conditions avec IRIS la formule PSF = [ Module FFT (Aperture) ]^2   ne fonctionne pas pour un front-d'onde déformé , sait à dire lorsque tous les points de la surface d'onde ne sont pas en phase, comme au travers d'une optique imparfaite ou via les turbulences atmosphériques ...
      La notion de phase ou de différence de marche optique manque dans cette application FFT directe de l'image.
       
      Dans la littérature j'ai trouvé des formules comme celles-ci

       
      ainsi que des tableaux comme cela qui résume les transformation

       
      Ayant fait plusieurs essais sans résultat et ne sortant pas de sup-optique pour interpréter ces formules j'étais bloqué.
      J'ai alors contacté plusieurs personnes dont l'observatoire de Nice et celui de Paris.
      Nice m'a renvoyé vers 2 astro-amateurs réputés, mais au final le résultat n'était pas au RDV.
      L'observatoire de Paris m'a répondu en la personne de Monsieur Anthony Boccaletti qui avec patience et courtoisie m'a bien aidé. Je ne peux donc que le remercié une nouvelle fois ici.
       
      En fait quand on sait c'est relativement simple.
      Voici l'exemple, j'ai choisie un front déformé de coma pure car la PSF résultat est bien dissymétrique comme dans le cas général des tavelures mais en plus simple.
      WinRoddier permet de faire des simulations

      L'image du front d'une coma pure sera toujours la même, ce qui change sera l'amplitude de la déformée, son PTV, ici il est de 848 nm pour la longueur d'onde de 490nm et le terme Z8(3,-1) est de 150nm
      848 / 490 = 1.73 donc le PTV exprimé en rapport d'onde est de 1.73
      La différence de marche optique (ddm) entre le point le plus en avance et le point le plus en retard est de 1.73 onde
      Voici l'image front-d'onde :  
      Avec IRIS on peut soustraire la constante correspondant au fond de l'image, le fond devient 0 (zéro), ainsi les pixels positifs on une ddm en avance de marche et les pixels négatifs sont en retard de marche.
      donc le ddm d'un pixel de l'image par la règle de trois est :  
      ddm = valeur pixel * 1.73 / 251
      La phase s'écrit    phi = valeur pixel * 2 * pi * 1.73 / 251
      L'image phi est alors proportionnelle à l'image ddm et celle de départ.
       
      L'image pupille est simplement remplie de 1 dans la pupille et de 0 hors de la pupille :  
       
      Iris permet de transformer une image en tableau avec la commande < export_asc [nom] qui produit le fichier nom.asc
      Il s'ouvre avec l'éditeur de texte et se rentre facilement dans un outil type tableur excel
      Il y a 3 colonnes, les 2 coordonnées des pixels et sa valeur,  (x , y, valeur), on peut ainsi faire les calculs nécessaires et recréer l'image résultat. La commande < import_asc [nom] dans IRIS
      Ainsi l'image phi est la même que l'image d'entrée (proportionnelle), sauf qu'au lieu d'avoir un PTV en pixel de 251, le nouveau PTV en pixel va de -5.43 à +5.43 pour cet exemple
       
      La formule de la littérature peut s'écrire    PSF = | FFT ( A*exp( i phi)) |²   ou A est la fonction pupille. Le | |² correspond au module de la FFT au carré ce qui confirme la formule de départ lorsque le front est plan (phi = 0), sans ddm
      Mais qu'en est-il du exp( i phi)
      i c'est le nombre complexe imaginaire tel que i² = -1
      et exp( i phi) = cos(phi) + i*sin(phi)
      Dans le tableur il suffit de calculer en fonction de la valeur de la colonne phi, une colonne cos(phi) et une autre sin(phi). toutes les valeurs seront alors comprises entre -1 et 1
      Et comme les valeurs pixels ne peuvent être que des nombre entier il faut les multiplier par une constante par exemple 30000 pour remplir la plage d'IRIS 16 bits (32767 max)
      On peut ainsi créer les images cos(phi) et sin(phi)
      cos(phi)              et sin(phi)
      cos(phi)_30000.fit   et   sin(phi)_30000.fit
       
      Détail qui a son importante :
      sin(0) = 0 donc le fond reste à zéro
      cos(0) = 1 donc tous les points du fond qui étaient à zéro passent à 1. Et  multiplier par 30000 ils passent à 30000. Il faut alors multiplier cette image cos par l’image pupille (constituée de pixels 0 et 1), multiplier par 0 pour retrouver le fond à zéro, le reste est multiplier par 1 pour que l’image cos reste inchangées dans la zone pupille.
       
      Je fait simplement remarquer ici qu’une FFT est indépendante de l’intensité des pixels dans la mesure où les 2 images de même format sont proportionnelle en intensité.
      Mais que faire de ces 2 images ? On en cherche qu'une la PSF !
      De plus le module d'une FFT donne toujours une image symétrique alors qu'une PSF dans le cas général pour un front non plan est dissymétrique (exemple la PSF de la coma pure)
      Il reste que la solution de faire une FFT-1 la fonction inverse de la FFT qui à partir de 2 images l'une réel ou de fréquence, l'autre imaginaire ou de phase, donne une image résultat unique.
      Il est précisé également que le fond à zéro doit être agrandi au minimum à un format couvrant 2 fois le diamètre de la pupille (< padding dans IRIS)
      Et il faut que les images soit centrer pour une FFT-1   (fonction ffti dans IRIS)
       
      Au final voici ce que l'on obtient avec les 2 images au 2048 x 2048 :
       
      Capture d'écran dans ImageJ :

       
      On retrouve donc bien la PSF recherchée .
       
      En fait la formule de départ dans la littérature pour des novices comme moi aurait pu s'écrire
      L'image PSF est la transformée de Fourier inverse mise au carré, du couple d'images ( A*cos(phi) , sin(phi)) où phi est la phase en chaque point de l'image front-d'onde et A l'image pupille (0,1)         PSF = [ FFT-1[ A*cos(phi) , sin(phi)] ]²
       
      CPI-Z
       
       
    • By LE ROUX
      bonjour à tous,
      je suis en cours d'acquisition d'une monture eq6r -pro goto sky watcher dernière génération pour y monter mon tube lx200 1et 0" de f=2500mm (provient de ma  monture meade lx200acf maintenant trop lourde pour moi) ,et en vue de me mettre a l' astrophoto, j 'ai besoin d'avis pour choisir le type de guidage adapté a cette focale, lunette guide(mais poids et champ?...ou diviseur optique celestron( mais difficulté à trouver une étoile guide..) ou autres solutions.
      merci
    • By Daniel Malaise
      Bonne nouvelle ! Aussi incroyable que cela puisse paraître, nous avons retrouvé « notre » photomètre !
       
      Il y a quelques semaines, mon fils avait pris contact avec l’Observatoire d’Ondřejov pour leur demander s’ils pouvaient par hasard remettre la main sur le spectrophotomètre quelque part dans leur grenier ou leur cave…
       
      Et ils l’ont retrouvé ! Nous avons d’ailleurs reçu une réponse fort aimable et sommes très reconnaissants! Nous nous rendrons en Tchéquie dès que la situation sanitaire le permettra, pour ramener cette « relique » dans nos archives
       
      Vous pouvez suivre cette aventure et d'autres sujets sur mon blog d'astronomie.
       
      Profitez de la vie et restez en contact !
       
      Daniel Malaise, Dr Sc
      Science lovers blog

  • Upcoming Events